This study proposes SVM based Random Subspace (RS) ensemble classifier to discriminate different Power Quality Events (PQEs) in a photovoltaic (PV) connected Microgrid (MG) model. The MG model is developed and simulated with the presence of different PQEs (voltage and harmonic related signals and distinctive transients) in both on-grid and off-grid modes of MG network, respectively. In the pre-stage of classification, the features are extracted from numerous PQE signals by Discrete Wavelet Transform (DWT) analysis, and the extracted features are used to learn the classifiers at the final stage. In this study, first three Kernel types of SVM classifiers (Linear, Quadratic, and Cubic) are used to predict the different PQEs. Among the results that Cubic kernel SVM classifier offers higher accuracy and better performance than other kernel types (Linear and Quadradic). Further, to enhance the accuracy of SVM classifiers, a SVM based RS ensemble model is proposed and its effectiveness is verified with the results of kernel based SVM classifiers under the standard test condition (STC) and varying solar irradiance of PV in real time. From the final results, it can be concluded that the proposed method is more robust and offers superior performance with higher accuracy of classification than kernel based SVM classifiers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8794120PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0262570PLOS

Publication Analysis

Top Keywords

svm classifiers
16
random subspace
8
subspace ensemble
8
power quality
8
quality events
8
svm based
8
kernel types
8
higher accuracy
8
kernel based
8
based svm
8

Similar Publications

Development and validation of a radiomics nomogram for preoperative prediction of BRAF mutation status in adult patients with craniopharyngioma.

Neurosurg Rev

December 2024

Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Beijing, 100070, China.

Although craniopharyngiomas are rare benign brain tumors primarily managed by surgery, they are often burdened by a poor prognosis due to tumor recurrence and long-term morbidity. In recent years, BRAF-targeted therapy has been promising, showing potential as an adjuvant or neoadjuvant approach. Therefore, we aim to develop and validate a radiomics nomogram for preoperative prediction of BRAF mutation in craniopharyngiomas.

View Article and Find Full Text PDF

Background: Although it has been noticed that depressed patients show differences in processing emotions, the precise neural modulation mechanisms of positive and negative emotions remain elusive. FMRI is a cutting-edge medical imaging technology renowned for its high spatial resolution and dynamic temporal information, making it particularly suitable for the neural dynamics of depression research.

Methods: To address this gap, our study firstly leveraged fMRI to delineate activated regions associated with positive and negative emotions in healthy individuals, resulting in the creation of the positive emotion atlas (PEA) and the negative emotion atlas (NEA).

View Article and Find Full Text PDF

Explainable AI-Based Skin Cancer Detection Using CNN, Particle Swarm Optimization and Machine Learning.

J Imaging

December 2024

PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy.

Skin cancer is among the most prevalent cancers globally, emphasizing the need for early detection and accurate diagnosis to improve outcomes. Traditional diagnostic methods, based on visual examination, are subjective, time-intensive, and require specialized expertise. Current artificial intelligence (AI) approaches for skin cancer detection face challenges such as computational inefficiency, lack of interpretability, and reliance on standalone CNN architectures.

View Article and Find Full Text PDF

Objectives: To implement state-of-the-art deep learning architectures such as Deep-Residual-U-Net and DeepLabV3+ for precise segmentation of hippocampus and ventricles, in functional magnetic resonance imaging (fMRI). Integrate VGG-16 with Random Forest (VGG-16-RF) and VGG-16 with Support Vector Machine (VGG-16-SVM) to enhance the binary classification accuracy of Alzheimer's disease, comparing their performance against traditional classifiers.

Method: OpenNeuro and Harvard's Data verse provides Alzheimer's coronal functional MRI data.

View Article and Find Full Text PDF

Introduction: Vascular access (VA) is essential for patients with hemodialysis, and its dysfunction is a major complication that can reduce quality of life or even threaten life. VA patency is not only difficult to predict on an individual basis, but also challenging to predict in real-time. To overcome this challenge, this study aimed to develop a machine learning approach to predict 6-month primary patency (PP) using photoplethysmography (PPG) signals acquired from the tips of both index fingers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!