The NKCC1 ion transporter contributes to the pathophysiology of common neurological disorders, but its function in microglia, the main inflammatory cells of the brain, has remained unclear to date. Therefore, we generated a novel transgenic mouse line in which microglial NKCC1 was deleted. We show that microglial NKCC1 shapes both baseline and reactive microglia morphology, process recruitment to the site of injury, and adaptation to changes in cellular volume in a cell-autonomous manner via regulating membrane conductance. In addition, microglial NKCC1 deficiency results in NLRP3 inflammasome priming and increased production of interleukin-1β (IL-1β), rendering microglia prone to exaggerated inflammatory responses. In line with this, central (intracortical) administration of the NKCC1 blocker, bumetanide, potentiated intracortical lipopolysaccharide (LPS)-induced cytokine levels. In contrast, systemic bumetanide application decreased inflammation in the brain. Microglial NKCC1 KO animals exposed to experimental stroke showed significantly increased brain injury, inflammation, cerebral edema and worse neurological outcome. Thus, NKCC1 emerges as an important player in controlling microglial ion homeostasis and inflammatory responses through which microglia modulate brain injury. The contribution of microglia to central NKCC1 actions is likely to be relevant for common neurological disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8856735PMC
http://dx.doi.org/10.1371/journal.pbio.3001526DOI Listing

Publication Analysis

Top Keywords

microglial nkcc1
16
brain injury
12
nkcc1
9
nkcc1 ion
8
ion transporter
8
cell-autonomous manner
8
common neurological
8
neurological disorders
8
inflammatory responses
8
microglial
6

Similar Publications

Neuroinflammation contributes to the pathophysiology of major depressive disorder (MDD) by inducing neuronal excitability via dysregulation of microglial brain-derived neurotrophic factor (BDNF), Na-K-Cl cotransporter-1 (NKCC1), and K-Cl cotransporter-2 (KCC2) due to activation of BDNF-tropomyosin receptor kinase B (TrkB) signaling. Allosteric modulation of α7 nAChRs has not been investigated on BDNF, KCC2, and NKCC1 during LPS-induced depressive-like behavior. Therefore, we examined the effects of PNU120596, an α7 nAChR positive allosteric modulator, on the expression of BDNF, KCC2, and NKCC1 in the hippocampus and prefrontal cortex using Western blot analysis, immunofluorescence assay, and real-time polymerase chain reaction.

View Article and Find Full Text PDF

Although the Na-K-Cl cotransporter (NKCC1) inhibitor bumetanide has prominent positive effects on the pathophysiology of many neurological disorders, the mechanism of action is obscure. Attention paid to elucidating the role of Nkcc1 has mainly been focused on neurons, but recent single cell mRNA sequencing analysis has demonstrated that the major cellular populations expressing NKCC1 in the cortex are non-neuronal. We used a combination of conditional transgenic animals, in vivo electrophysiology, two-photon imaging, cognitive behavioural tests and flow cytometry to investigate the role of Nkcc1 inhibition by bumetanide in a mouse model of controlled cortical impact (CCI).

View Article and Find Full Text PDF

The NKCC1 ion transporter contributes to the pathophysiology of common neurological disorders, but its function in microglia, the main inflammatory cells of the brain, has remained unclear to date. Therefore, we generated a novel transgenic mouse line in which microglial NKCC1 was deleted. We show that microglial NKCC1 shapes both baseline and reactive microglia morphology, process recruitment to the site of injury, and adaptation to changes in cellular volume in a cell-autonomous manner via regulating membrane conductance.

View Article and Find Full Text PDF

Ion channels and transporters in microglial function in physiology and brain diseases.

Neurochem Int

January 2021

Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA, 15213, USA. Electronic address:

Microglial cells interact with all components of the central nervous system (CNS) and are increasingly recognized to play essential roles during brain development, homeostasis and disease pathologies. Functions of microglia include maintaining tissue integrity, clearing cellular debris and dead neurons through the process of phagocytosis, and providing tissue repair by releasing anti-inflammatory cytokines and neurotrophic factors. Changes of microglial ionic homeostasis (Na, Ca, K, H, Cl) are important for microglial activation, including proliferation, migration, cytokine release and reactive oxygen species production, etc.

View Article and Find Full Text PDF

Enhanced nonsynaptic epileptiform activity in the dentate gyrus after kainate-induced status epilepticus.

Neuroscience

September 2015

Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei, São João del-Rei, Brazil. Electronic address:

Understanding the mechanisms that influence brain excitability and synchronization provides hope that epileptic seizures can be controlled. In this scenario, non-synaptic mechanisms have a critical role in seizure activity. The contribution of ion transporters to the regulation of seizure-like activity has not been extensively studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!