AI Article Synopsis

  • Novel additive manufacturing techniques are enhancing industrial applications by allowing for the creation of multi-material products, particularly in the medical field for developing biologically compatible constructs with functional cells.
  • Bioprinting methods like extrusion, inkjet, and laser-assisted techniques employ hydrogels in bioinks, enabling the recreation of natural microenvironments while ensuring cellular viability and good mechanical properties post-printing.
  • The field faces challenges like managing heterogeneity and microstructural complexity, but advancements aim to create multi-organ platforms to better study chemical exposure, disease progression, and the effectiveness of new therapies.

Article Abstract

Novel additive manufacturing techniques are revolutionizing fields of industry providing more dimensions to control and the versatility of fabricating multi-material products. Medical applications hold great promise to manufacture constructs of mixed biologically compatible materials together with functional cells and tissues. We reviewed technologies and promising developments nurturing innovation of physiologically relevant models to study safety of chemicals that are hard to reproduce in current models, or diseases for which there are no models available. Extrusion-, inkjet- and laser-assisted bioprinting are the most used techniques. Hydrogels as constituents of bioinks and biomaterial inks are the most versatile materials to recreate physiological and pathophysiological microenvironments. The highlighted bioprinted models were chosen because they guarantee post-printing cellular viability while maintaining desirable mechanical properties of their constitutive bioinks or biomaterial inks to ensure their printability. Bioprinting is being readily adopted to overcome ethical concerns of in vivo models and improve the automation, reproducibility, geometry stability of traditional in vitro models. The challenges for advancing the technological level readiness of bioprinting require overcoming heterogeneity, microstructural complexity, dynamism and integration with other models, to generate multi-organ platforms that can inform about biological responses to chemical exposure, disease development and efficacy of novel therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1109/RBME.2022.3146293DOI Listing

Publication Analysis

Top Keywords

models
8
exposure disease
8
bioinks biomaterial
8
biomaterial inks
8
bioprinting
4
bioprinting strategy
4
strategy build
4
build informative
4
informative models
4
models exposure
4

Similar Publications

Bladder cancer (BLCA) genomic profiling has identified molecular subtypes with distinct clinical characteristics and variable sensitivities to frontline therapy. BLCAs can be categorized into luminal or basal subtypes based on their gene expression. We comprehensively characterized nine human BLCA cell lines (UC3, UC6, UC9, UC13, UC14, T24, SCaBER, RT4V6 and RT112) into molecular subtypes using orthotopic xenograft models.

View Article and Find Full Text PDF

To accurately model and validate the 6 MV Elekta Compactlinear accelerator using the Geant4 Application for Tomographic Emission (GATE). In particular, this study focuses on the precise calibration and validation of critical parameters, including jaw collimator positioning, electron source nominal energy, flattening filter geometry, and electron source spot size, which are often not provided in technical documentation. Methods: Simulation of the Elekta Compact6 MV linear accelerator was performed using the Geant4 Application for Tomographic Emission (GATE) v.

View Article and Find Full Text PDF

Simulations of the Potential for Diffraction Enhanced Imaging at 8 keV using Polycapillary Optics.

Biomed Phys Eng Express

January 2025

Physics Department, University at Albany, 1400 Washington Ave, Albany, New York, 12222-0100, UNITED STATES.

Conventional x-ray radiography relies on attenuation differences in the object, which often results in poor contrast in soft tissues. X-ray phase imaging has the potential to produce higher contrast but can be difficult to utilize. Instead of grating-based techniques, analyzer-based imaging, also known as diffraction enhanced imaging (DEI), uses a monochromator crystal with an analyzer crystal after the object.

View Article and Find Full Text PDF

Serum metabolic fingerprinting on Ag@AuNWs for traumatic brain injury diagnosis.

Nanotechnology

January 2025

Xi'an Jiaotong University, xian ning west road 28#, xi'an, Xi'an, None Selected, 710049, CHINA.

Accurate and rapid diagnosis of traumatic brain injury (TBI) is essential for high-quality medical services. Nonetheless, the current diagnostic platform still has challenges in rapidly and accurately analysing clinical samples. Here, we prepared a highly stable, repeatable and sensitive gold-plated silver core-shell nanowire (Ag@AuNWs) for surface-enhanced Raman spectroscopy (SERS) metabolic fingerprint diagnosis of TBI.

View Article and Find Full Text PDF

Background: Contrary to popular concerns about the harmful effects of media use on mental health, research on this relationship is ambiguous, stalling advances in theory, interventions, and policy. Scientific explorations of the relationship between media and mental health have mostly found null or small associations, with the results often blamed on the use of cross-sectional study designs or imprecise measures of media use and mental health.

Objective: This exploratory empirical demonstration aimed to answer whether mental health effects are associated with media use experiences by (1) redirecting research investments to granular and intensive longitudinal recordings of digital experiences to build models of media use and mental health for single individuals over the course of one entire year, (2) using new metrics of fragmented media use to propose explanations of mental health effects that will advance person-specific theorizing in media psychology, and (3) identifying combinations of media behaviors and mental health symptoms that may be more useful for studying media effects than single measures of dosage and affect or assessments of clinical symptoms related to specific disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!