Businesses in high-risk environments have been reluctant to adopt modern machine learning approaches due to their complex and uninterpretable nature. Most current solutions provide local, instance-level explanations, but this is insufficient for understanding the model as a whole. In this work, we show that strategy clusters (i.e., groups of data instances that are treated distinctly by the model) can be used to understand the global behavior of a complex ML model. To support effective exploration and understanding of these clusters, we introduce StrategyAtlas, a system designed to analyze and explain model strategies. Furthermore, it supports multiple ways to utilize these strategies for simplifying and improving the reference model. In collaboration with a large insurance company, we present a use case in automatic insurance acceptance, and show how professional data scientists were enabled to understand a complex model and improve the production model based on these insights.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2022.3146806DOI Listing

Publication Analysis

Top Keywords

machine learning
8
complex model
8
model
7
strategyatlas strategy
4
strategy analysis
4
analysis machine
4
learning interpretability
4
interpretability businesses
4
businesses high-risk
4
high-risk environments
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!