A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deformable Protein Shape Classification Based on Deep Learning, and the Fractional Fokker-Planck and Kähler-Dirac Equations. | LitMetric

The classification of deformable protein shapes, based solely on their macromolecular surfaces, is a challenging problem in protein-protein interaction prediction and protein design. Shape classification is made difficult by the fact that proteins are dynamic, flexible entities with high geometrical complexity. In this paper, we introduce a novel description for such deformable shapes. This description is based on the bifractional Fokker-Planck and Dirac-Kähler equations. These equations analyse and probe protein shapes in terms of a scalar, vectorial and non-commuting quaternionic field, allowing for a more comprehensive description of the protein shapes. An underlying non-Markovian Lévy random walk establishes geometrical relationships between distant regions while recalling previous analyses. Classification is performed with a multiobjective deep hierarchical pyramidal neural network, thus performing a multilevel analysis of the description. Our approach is applied to the SHREC'19 dataset for deformable protein shapes classification and to the SHREC'16 dataset for deformable partial shapes classification, demonstrating the effectiveness and generality of our approach.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2022.3146796DOI Listing

Publication Analysis

Top Keywords

protein shapes
16
deformable protein
12
shape classification
8
dataset deformable
8
shapes classification
8
classification
6
shapes
6
deformable
5
protein
5
protein shape
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!