Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The classification of deformable protein shapes, based solely on their macromolecular surfaces, is a challenging problem in protein-protein interaction prediction and protein design. Shape classification is made difficult by the fact that proteins are dynamic, flexible entities with high geometrical complexity. In this paper, we introduce a novel description for such deformable shapes. This description is based on the bifractional Fokker-Planck and Dirac-Kähler equations. These equations analyse and probe protein shapes in terms of a scalar, vectorial and non-commuting quaternionic field, allowing for a more comprehensive description of the protein shapes. An underlying non-Markovian Lévy random walk establishes geometrical relationships between distant regions while recalling previous analyses. Classification is performed with a multiobjective deep hierarchical pyramidal neural network, thus performing a multilevel analysis of the description. Our approach is applied to the SHREC'19 dataset for deformable protein shapes classification and to the SHREC'16 dataset for deformable partial shapes classification, demonstrating the effectiveness and generality of our approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2022.3146796 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!