Intramolecular carbon isotope signals reflect metabolite allocation in plants.

J Exp Bot

Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden.

Published: April 2022

Stable isotopes at natural abundance are key tools to study physiological processes occurring outside the temporal scope of manipulation and monitoring experiments. Whole-molecule carbon isotope ratios (13C/12C) enable assessments of plant carbon uptake yet conceal information about carbon allocation. Here, we identify an intramolecular 13C/12C signal at tree-ring glucose C-5 and C-6 and develop experimentally testable theories on its origin. More specifically, we assess the potential of processes within C3 metabolism for signal introduction based (inter alia) on constraints on signal propagation posed by metabolic networks. We propose that the intramolecular signal reports carbon allocation into major metabolic pathways in actively photosynthesizing leaf cells including the anaplerotic, shikimate, and non-mevalonate pathway. We support our theoretical framework by linking it to previously reported whole-molecule 13C/12C increases in cellulose of ozone-treated Betula pendula and a highly significant relationship between the intramolecular signal and tropospheric ozone concentration. Our theory postulates a pronounced preference for leaf cytosolic triose-phosphate isomerase to catalyse the forward reaction in vivo (dihydroxyacetone phosphate to glyceraldehyde 3-phosphate). In conclusion, intramolecular 13C/12C analysis resolves information about carbon uptake and allocation enabling more comprehensive assessments of carbon metabolism than whole-molecule 13C/12C analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9015809PMC
http://dx.doi.org/10.1093/jxb/erac028DOI Listing

Publication Analysis

Top Keywords

carbon isotope
8
carbon uptake
8
carbon allocation
8
intramolecular 13c/12c
8
intramolecular signal
8
whole-molecule 13c/12c
8
13c/12c analysis
8
carbon
6
intramolecular
5
13c/12c
5

Similar Publications

Identifying the origins of storm fluvial particulate organic carbon (POC) provides information about the hydrological connectivity within the river corridor and the roles of the land-stream interface in the carbon cycle. However, current understanding of storm-induced POC source dynamics is constrained by observations limited in space and time. This study presents a unique approach integrating higher spatial and temporal resolution sampling with a multi-biomarker analysis to better understand POC source dynamics across scales.

View Article and Find Full Text PDF

Franchthi Cave, in the Greek Peloponnese, is a well-known Paleolithic, Mesolithic and Neolithic site, with several human burials. In many parts of Europe there is clear evidence from archaeological and isotopic studies for a diet change between the Mesolithic and Neolithic periods. This is especially the case in coastal contexts where there is often a shift from predominantly marine food diets in the Mesolithic to terrestrial (presumably domesticated) foods in the Neolithic.

View Article and Find Full Text PDF

Atmospheric CO is thought to play a fundamental role in Earth's climate regulation. Yet, for much of Earth's geological past, atmospheric CO has been poorly constrained, hindering our understanding of transitions between cool and warm climates. Beginning ~370 million years ago in the Late Devonian and ending ~260 million years ago in the Permian, the Late Palaeozoic Ice Age was the last major glaciation preceding the current Late Cenozoic Ice Age and possibly the most intense glaciation witnessed by complex lifeforms.

View Article and Find Full Text PDF

Rationale: Extraterrestrial amines and ammonia are critical ingredients for the formation of astrobiologically important compounds such as amino acids and nucleobases. However, conventional methods for analyzing the composition and isotopic ratios of volatile amines suffer from lengthy derivatization and purification procedures, high sample mass consumption, and chromatographic interferences from derivatization reagents and non-target compounds.

Methods: Here we demonstrate a highly efficient method to analyze the composition and compound specific isotopic ratios of C to C amines as well as ammonia based on solid phase micro-extraction (SPME) on-fiber derivatization.

View Article and Find Full Text PDF

Riparian spiders are used in ecotoxicology as sentinels of bioavailable contaminants that are transferred from aquatic to terrestrial habitats via emergent aquatic insects. Spiders in the family Tetragnathidae are particularly of interest because a high proportion of their diet consists of emergent aquatic insects and their contaminant loads reflect the amount transferred through the food web to riparian predators. The transfer of contaminants can be determined through food web tracers such as stable isotopes and polyunsaturated fatty acids; however, it is unclear how contaminants and tracers vary over the course of a year.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!