The Mre11-Rad50-Nbs1 protein complex is one of the first responders to DNA double-strand breaks. Studies have shown that the catalytic activities of the evolutionarily conserved Mre11-Rad50 (MR) core complex depend on an ATP-dependent global conformational change that takes the macromolecule from an open, extended structure in the absence of ATP to a closed, globular structure when ATP is bound. We have previously identified an additional 'partially open' conformation using luminescence resonance energy transfer (LRET) experiments. Here, a combination of LRET and the molecular docking program HADDOCK was used to further investigate this partially open state and identify three conformations of MR in solution: closed, partially open, and open, which are in addition to the extended, apo conformation. Mutants disrupting specific Mre11-Rad50 interactions within each conformation were used in nuclease activity assays on a variety of DNA substrates to help put the three states into a functional perspective. LRET data collected on MR bound to DNA demonstrate that the three conformations also exist when nuclease substrates are bound. These models were further supported with small-angle X-ray scattering data, which corroborate the presence of multiple states in solution. Together, the data suggest a mechanism for the nuclease activity of the MR complex along the DNA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8824468 | PMC |
http://dx.doi.org/10.7554/eLife.69579 | DOI Listing |
Molecules
December 2024
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China.
Cell Rep Med
December 2024
Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-8502, Japan. Electronic address:
Duchenne muscular dystrophy (DMD) is a severe muscle disorder caused by mutations in the DMD gene, leading to dystrophin deficiency. Antisense oligonucleotide (ASO)-mediated exon skipping offers potential by partially restoring dystrophin, though current therapies remain mutation specific with limited efficacy. To overcome those limitations, we developed brogidirsen, a dual-targeting ASO composed of two directly connected 12-mer sequences targeting exon 44 using phosphorodiamidate morpholino oligomers.
View Article and Find Full Text PDFCureus
December 2024
Critical Care Medicine, Springfield Clinic, Springfield, USA.
A 27-year-old male patient with chronic alcohol use disorder was diagnosed with Marchiafava-Bignami disease (MBD) after experiencing an episode of unconsciousness. MRI scans revealed lesions in the corpus callosum and adjacent white matter. Despite prompt initiation of intensive treatment with high-dose thiamine and corticosteroids, the patient only partially recovered, remaining disoriented and exhibiting persistent neurological deficits during follow-up.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
Many protein complexes are highly dynamic in cells; thus, characterizing their conformational changes in cells is crucial for unraveling their functions. Here, using cryo-electron microscopy, 451,700 ribosome particles from Saccharomyces cerevisiae cell lamellae were obtained to solve the 60S region to 2.9-Å resolution by in situ single-particle analysis.
View Article and Find Full Text PDFBiol Open
December 2024
Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren CH-8952, Switzerland.
The gonadal anchor cell (AC) is an essential organizer for the development of the egg-laying organ in the C. elegans hermaphrodite. Recent work has investigated the mechanisms that control the quiescent state the AC adopts while fulfilling its functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!