Methionine is an essential amino acid in all living organisms and has been used in various industrial applications such as food and feed additives. However, inhibition of enzymes involved in methionine biosynthesis is considered to be a crucial bottleneck for an efficient bio-based methionine production process. Homoserine O-succinyltransferase from (HST) has been reported to be feedback inhibited by the final product methionine. To understand the regulation mechanism of the enzyme and generate a feedback-resistant mutant, we determined the crystal structure of HST and elucidated the binding site of homoserine and succinyl-CoA. The enzyme kinetic experiments of HST revealed that the enzyme is noncompetitively inhibited by methionine with a value of 2.44 mM, and we also identified a putative inhibitor binding site located in the vicinity of the substrate binding site. We then generated the HST variant with reduced feedback inhibition with a value of 17.40 mM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.1c07211 | DOI Listing |
Small
January 2025
Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, China.
Single-atom materials provide a platform to precisely regulate the electrochemical redox behavior of electrode materials with atomic level. Here, a multifield-regulated sintering route is reported to rapidly prepare single-atom zinc with a very high loading mass of 24.7 wt.
View Article and Find Full Text PDFJ Cancer Prev
December 2024
Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea.
Prolyl hydroxylase domain 2 (PHD2) is the primary oxygen sensing enzyme involved in hydroxylation of hypoxia-inducible factor (HIF). Under normoxic conditions, PHD2 hydroxylates specific proline residues in HIF-1α and HIF-2α, promoting their ubiquitination and subsequent proteasomal degradation. Although PHD2 activity decreases in hypoxia, notable residual activity persists, but its function in these conditions remains unclear Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) targets proteins with phosphorylated serine/threonine-proline (pSer/Thr-Pro) motifs.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Exploiting novel noncovalent interactions for catalysis design represents a fascinating direction. For the flexible and relatively weak anion-π interactions, manipulation of two or more π-acidic surfaces for cooperative activation is highly desirable. Here, we demonstrate the strategy of cooperative anion-π catalysis based on chiral molecular cages with V-shaped electron-deficient cavities for synergic binding and activation of dicarbonyl electrophiles toward highly enantioselective desymmetrization transformation.
View Article and Find Full Text PDFKaohsiung J Med Sci
January 2025
Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing, China.
Tumor cell stemness plays a pivotal role in generating functional heterogeneity within tumors and is implicated in essential processes such as drug resistance, metastasis, and cell proliferation. Therefore, creating novel tumor diagnostic techniques and therapeutic plans requires a knowledge of the possible processes that preserve the stem cell-like qualities of cancers. Bioinformatics analysis of NOLC1 expression in lung adenocarcinoma (LUAD) and prediction of its upstream transcription factors and their binding sites were completed.
View Article and Find Full Text PDFMater Horiz
January 2025
National local joint engineering research center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
The stable operation of high-capacity lithium-sulfur batteries (LSBs) has been hampered by slow conversion kinetics of lithium polysulfides (LiPSs) and instability of the lithium metal anodes. Herein, 6-(dibutylamino)-1,3,5-triazine-2,4-thiol (DTD) is introduced as a functional additive for accelerating the kinetics of cathodic conversion and modulating the anode interface. We proposed that a coordination interaction mechanism drives the polysulfide conversion and modulates the Li solvated structure during the binding of the N-active site of DTD to LiPSs and lithium salts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!