Organic radical reactions confined to containers in supramolecular systems.

Chem Commun (Camb)

Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.

Published: February 2022

Radical chemistry and host-guest chemistry have each developed rapidly over the past decades and their intersection offers an attractive opportunity for modern applications. Radicals can be introduced into the frameworks of supramolecular hosts or radicals can be guests, generated in and confined to host containers. In this highlight we outline research achievements in both approaches, photoinduced and external reagent-initiated radicals in the host. Specific topics include rearrangement and fragmentation reactions, hydrocarbon oxidation and alkyl halide reductions of molecules confined to various supramolecular complexes. Applications to challenging problems in chemical synthesis are suggested.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cc06851bDOI Listing

Publication Analysis

Top Keywords

organic radical
4
radical reactions
4
reactions confined
4
confined containers
4
containers supramolecular
4
supramolecular systems
4
systems radical
4
radical chemistry
4
chemistry host-guest
4
host-guest chemistry
4

Similar Publications

Charge-transfer complexation of coordination cages for enhanced photochromism and photocatalysis.

Nat Commun

January 2025

State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.

Intensified host-guest electronic interplay within stable metal-organic cages (MOCs) presents great opportunities for applications in stimuli response and photocatalysis. Zr-MOCs represent a type of robust discrete hosts for such a design, but their host-guest chemistry in solution is hampered by the limited solubility. Here, by using pyridinium-derived cationic ligands with tetrakis(3,5-bis(trifluoromethyl)phenyl)borate (BAr) as solubilizing counteranions, we report the preparation of soluble Zr-MOCs of different shapes (1-4) that are otherwise inaccessible through a conventional method.

View Article and Find Full Text PDF

Aggregated gold nanoparticles as photoactivators for the photopolymerization of proteins.

J Photochem Photobiol B

January 2025

Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA. Electronic address:

Photopolymerization of bovine serum albumin was carried out using reactive oxygen species (ROS) generated by the irradiation of citrate-stabilized gold nanoparticles by a pulsed Nd:YAG laser. The ROS in this case, singlet oxygen (O), targets aromatic amino acids within the protein to induce photopolymerization or crosslinking. Other ROS, like the hydroxyl radical, can also form in solution and under high-energy irradiation.

View Article and Find Full Text PDF

Singlet oxygen presenting a higher detoxification potential on enrofloxacin than sulfate and hydroxyl radicals.

J Hazard Mater

January 2025

School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China. Electronic address:

With the aid of radical and non-radical reactive species (RS), advanced oxidation processes can efficiently degrade emerging organic contaminants including antibiotics but may generate toxic transformation products (TPs). However, the detoxification capacity of popular RS has not been well elucidated. This study compared the detoxification of enrofloxacin (ENR) with three RS-dominated systems: O, SO+OH, OH.

View Article and Find Full Text PDF

Molecular composition of hydroxyl radical-resistant organics in municipal solid waste leachate.

J Hazard Mater

December 2024

School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China. Electronic address:

Although hydroxyl radicals (OH) degrade organic pollutants nonselectively, their mineralization rate during the treatment of waste leachate biological treatment effluent (BTL) using Fenton or Fenton-like systems is not high, and the reason is unknown. In this study, we investigated three typical Fenton-like systems that act on dissolved organic matter (DOM) in BTL. We analyzed the molecular composition of DOM resistant to OH, using ultrahigh resolution mass spectrometry.

View Article and Find Full Text PDF

The mechanism of alkali to inhibit the organics polymerization in improving the biodegradability of wastewater treated by heat/peroxydisulfate.

Water Res

January 2025

Yellow River Laboratory of Shanxi Province, Shanxi University, Taiyuan, 030006, PR China; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China. Electronic address:

High-temperature wastewaters can themselves activate peroxydisulfate (PDS) to remove aromatic contaminants via polymerization. This, however, may result in an insufficient carbon source for denitrification during biochemical treatment, and the formed polymers, without a proper reuse method, will be costly to handle as hazardous waste. This study demonstrates that the addition of NaOH can suppress the polymerization of aromatic contaminants, which is observed not only in simulated wastewater but also in actual coking wastewater (ACW).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!