Arsenic (As) is a hazardous pollutant that negatively impacts the physiological functions of alga. So far, a detailed understanding of algal response to As stress is still lacking. In this study, a transcriptome analysis was performed to illustrate the toxicity response of Caulerpa lentillifera J. Agardh, an edible algae with rich nutrition, to arsenite [As(III)], a toxic form of As. Totally, 1913 differentially expressed genes (DEGs) were screened, of which 642 were up- and 1271 were downregulated in C. lentillifera under As(III) stress (30 mg·L) compared with control. As(III) stress promoted the growth of C. lentillifera at low concentration (0.1 mg·L) and inhibited the growth at high concentration (≥ 0.5 mg·L). Multiple DEGs involved in oxidoreductase activities were significantly affected by As(III), and several DEGs related to antioxidant enzyme activity were downregulated, resulting in suffering from oxidative stress in C. lentillifera. Results also showed that As(III) stress inhibited chlorophyll and carotenoid synthesis, destroyed the integrity of chloroplasts, and interfered with the absorption of light energy, thereby inhibiting photosynthesis in C. lentillifera. The highly enriched ABC transporter-related genes involved in the detoxification process were upregulated under As(III) stress, indicating their critical role in the resistance to As stress in C. lentillifera. The gene expressions for 10 selected DEGs were confirmed by qRT-PCR, showing the reliability of the data revealed by RNA sequencing. Our novel work illustrated the toxicity of C. lentillifera under As(III) stress at the molecular level, serving as a basis for future investigations on the prevention and treatment of such pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-18122-wDOI Listing

Publication Analysis

Top Keywords

asiii stress
20
lentillifera asiii
12
transcriptome analysis
8
toxicity response
8
lentillifera
8
caulerpa lentillifera
8
lentillifera agardh
8
stress
8
stress lentillifera
8
asiii
6

Similar Publications

Quorum sensing-enhanced electron transfer in anammox consortia: A mechanism for improved resistance to variable-valence heavy metals.

J Hazard Mater

January 2025

Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083,  China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China. Electronic address:

Quorum sensing (QS) is recognized for enhancing bacterial resistance against heavy metals by regulating the production of extracellular substances that hinder metal penetration into the intracellular environment. However, it remains unclear whether QS contributes to resistance by regulating electron transfer, thereby transforming metals from more toxic to less toxic forms. This study investigated the regulatory mechanism of acyl-homoserine lactone (AHL)-mediated QS on electron transfer under As(III) and Cr(VI) stress.

View Article and Find Full Text PDF

Microbes have been shown to adapt to stressful or even lethal conditions through displaying genome plasticity. However, how bacteria utilize the ability of genomic plasticity to deal with high antimony (Sb) stress has remained unclear. In this study, the spontaneous mutant strain SMAs-55 of sp.

View Article and Find Full Text PDF

Galactinol synthase 4 requires sulfur assimilation pathway to provide tolerance towards arsenic stress under limiting sulphur condition in Arabidopsis.

J Hazard Mater

December 2024

CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002,  India; CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India. Electronic address:

Heavy metalloid stress such as arsenic (As) toxicity and nutrient imbalance constitute a significant threat to plant productivity and development. Plants produce sulfur (S)-rich molecules like glutathione (GSH) to detoxify arsenic, but sulfur deficiency worsens its impact. Previous research identified Arabidopsis thaliana ecotypes Koz2-2 (tolerant) and Ri-0 (sensitive) under low-sulfur (LS) and As(III) stress.

View Article and Find Full Text PDF

Contrasting effects of arsenic on mycorrhizal-mediated silicon and phosphorus uptake by rice.

J Environ Manage

January 2025

Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.

Silicon (Si) and arbuscular mycorrhizal fungi (AMF) increase plant resistance to various environmental stresses, including heavy metal (and metalloid) toxicity. Although Si and AMF each independently enhance plant tolerance, the nature of their interactions and their combined impacts on nutrient uptake, especially in the context of toxic elements such as arsenic (As), remains to be elucidated. This study investigated AMF-mediated regulation of plant nutrient uptake under As stress using rice, a model Si-accumulating plant.

View Article and Find Full Text PDF

Arsenite-induced liver apoptosis via oxidative stress and the MAPK signaling pathway in marine medaka.

Aquat Toxicol

December 2024

Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572025, China. Electronic address:

Arsenic (As) is widely recognized for its hazards to aquatic organisms; however, its toxicological impacts on apoptosis in marine fish remain inadequately explored. This study investigated the effects of in vivo dietary exposure to 50 or 500 mg/kg AsIII (as NaAsO) over 28 days in marine medaka, alongside in vitro exposure to 50-750 μg/L AsIII for 48 h in a hepatic cell line derived from marine medaka, to elucidate the toxicity and underlying molecular mechanisms. In vivo, As significantly accumulated in liver tissue (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!