Manufacturers' product line strategies and environmental impacts under carbon cap and trade policies.

Environ Sci Pollut Res Int

College of Urban and Environmental Sciences, Central China Normal University, Hubei, 430070, China.

Published: June 2022

AI Article Synopsis

Article Abstract

This paper explores the impact of carbon cap-and-trade policies and consumer low-carbon preferences on the choice of manufacturers' product lines. We further investigate the optimal decisions of manufacturers under different product line strategies. Moreover, we analyze consumer surplus, environmental impact, and social welfare under different product line strategies. The results show that producing low-carbon and ordinary products is the optimal product line strategy for manufacturers. In addition, we demonstrate that when considering carbon cap-and-trade policies and consumers' low-carbon preferences, the consumer surplus, environmental impact, and social welfare when manufacturers produce low-carbon products are always better than in other scenarios. Furthermore, our research results also show that with the increase of carbon trading prices, the consumer surplus and social welfare when manufacturers choose to produce low-carbon products are always better than in other scenarios. However, we find that the environmental impact is not always outperforming when manufacturers choose a product line that produces low-carbon products than other scenarios.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-17909-1DOI Listing

Publication Analysis

Top Keywords

product strategies
12
consumer surplus
12
environmental impact
12
social welfare
12
low-carbon products
12
manufacturers' product
8
carbon cap-and-trade
8
cap-and-trade policies
8
low-carbon preferences
8
surplus environmental
8

Similar Publications

Direct Methane to Methanol Conversion: An Overview of Non-Syn Gas Catalytic Strategies.

Chem Rec

January 2025

Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India.

Direct methane to methanol conversion is a dream reaction in industrial chemistry, which takes inspiration from the biological methanol production catalysed by methane monooxygenase enzymes (MMOs). Over the years, extensive studies have been conducted on this topic by bioengineering the MMOs, and tailoring methods to isolate the MMOs in the active form. Similarly, remarkable achievements have been noted in other methane activation strategies such as the use of heterogeneous catalysts or molecular catalysts.

View Article and Find Full Text PDF

Solvent Mediated Interfacial Microenvironment Design for High-Performance Electrochemical CO Reduction to C Products.

Small

January 2025

National Energy Metal Resources and New Materials Key Laboratory, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China.

Electrochemical CO reduction (CORR) in membrane electrode assembly (MEA) represents a viable strategy for converting CO into value-added multi-carbon (C) compounds. Therefore, the microstructure of the catalyst layer (CL) affects local gas transport, charge conduction, and proton supply at three-phase interfaces, which is significantly determined by the solvent environment. However, the microenvironment of the CLs and the mechanism of the solvent effect on C selectivity remains elusive.

View Article and Find Full Text PDF

Framework Nucleic Acid-Based and Neutrophil-Based Nanoplatform Loading Baicalin with Targeted Drug Delivery for Anti-Inflammation Treatment.

ACS Nano

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.

Targeted drug delivery is a promising strategy for treating inflammatory diseases, with recent research focusing on the combination of neutrophils and nanomaterials. In this study, a targeted nanodrug delivery platform (Ac-PGP-tFNA, APT) was developed using tetrahedral framework nucleic acid (tFNA) along with a neutrophil hitchhiking mechanism to achieve precise delivery and anti-inflammatory effects. The tFNA structure, known for its excellent drug-loading capacity and cellular uptake efficiency, was used to carry a therapeutic agent─baicalin.

View Article and Find Full Text PDF

In this context, we reported for the first time the design and development of a self-assembled nanoantiviral pesticide based on the star polycation (SPc) and the broad-spectrum fungicide/antiviral agent seboctylamine for field control of (SMV), a highly destructive plant virus in soybean crops. The SPc could self-assemble with seboctylamine through hydrogen bonds and van der Waals forces, and the complexation with SPc reduced the particle size of seboctylamine to form a spherical seboctylamine/SPc complex. In addition, the contact angle of seboctylamine decreased, and its retention increased with the aid of SPc, indicating excellent wetting properties and strong leaf surface adhesion performance.

View Article and Find Full Text PDF

Scalable synthesis of (±)-gregatin A a 1,3-dipolar cycloaddition strategy.

Org Biomol Chem

January 2025

State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.

A 6-step gram-scale synthesis of the fungal polyketide (±)-gregatin A is described. The synthetic route features an intermolecular 1,3-dipolar cycloaddition, a Mo-mediated disconnection of the isoxazole skeleton, and an acid-mediated deprotection/enamine hydrolysis and hemiketalization cascade.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!