Background: A procedure for sentinel lymph node biopsy (SLNB) using superparamagnetic iron-oxide (SPIO) nanoparticles and intraoperative sentinel lymph node (SLN) detection was developed to overcome drawbacks associated with the current standard-of-care SLNB. However, residual SPIO nanoparticles can result in void artefacts at follow-up magnetic resonance imaging (MRI) scans. We present a grading protocol to quantitatively assess the severity of these artefacts and offer an option to minimise the impact of SPIO nanoparticles on diagnostic imaging.
Methods: Follow-up mammography and MRI of two patient groups after a magnetic SLNB were included in the study. They received a 2-mL subareolar dose of SPIO (high-dose, HD) or a 0.1-mL intratumoural dose of SPIO (low-dose, LD). Follow-up mammography and MRI after magnetic SLNB were acquired within 4 years after breast conserving surgery (BCS). Two radiologists with over 10-year experience in breast imaging assessed the images and analysed the void artefacts and their impact on diagnostic follow-up.
Results: A total of 19 patients were included (HD, n = 13; LD, n = 6). In the HD group, 9/13 patients displayed an artefact on T1-weighted images up to 3.6 years after the procedure, while no impact of the SPIO remnants was observed in the LD group.
Conclusions: SLNB using a 2-mL subareolar dose of magnetic tracer in patients undergoing BCS resulted in residual artefacts in the breast in the majority of patients, which may hamper follow-up MRI. This can be avoided by using a 0.1-mL intratumoural dose.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8792114 | PMC |
http://dx.doi.org/10.1186/s41747-021-00257-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!