Increased COVID-19 disease severity is higher among patients with type 2 diabetes mellitus and hypertension. However, the metabolic pathways underlying this association are not fully characterized. This study aims to identify the metabolic signature associated with increased COVID-19 severity in patients with diabetes mellitus and hypertension. One hundred and fifteen COVID-19 patients were divided based on disease severity, diabetes status, and hypertension status. Targeted metabolomics of serum samples from all patients was performed using tandem mass spectrometry followed by multivariate and univariate models. Reduced levels of various triacylglycerols were observed with increased disease severity in the diabetic patients, including those containing palmitic (C16:0), docosapentaenoic (C22:5, DPA), and docosahexaenoic (C22:6, DHA) acids (FDR < 0.01). Functional enrichment analysis revealed triacylglycerols as the pathway exhibiting the most significant changes in severe COVID-19 in diabetic patients (FDR = 7.1 × 10). Similarly, reduced levels of various triacylglycerols were also observed in hypertensive patients corresponding with increased disease severity, including those containing palmitic, oleic (C18:1), and docosahexaenoic acids. Functional enrichment analysis revealed long-chain polyunsaturated fatty acids (n-3 and n-6) as the pathway exhibiting the most significant changes with increased disease severity in hypertensive patients (FDR = 0.07). Reduced levels of triacylglycerols containing specific long-chain unsaturated, monounsaturated, and polyunsaturated fatty acids are associated with increased COVID-19 severity in diabetic and hypertensive patients, offering potential novel diagnostic and therapeutic targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8784560PMC
http://dx.doi.org/10.3389/fmed.2021.788687DOI Listing

Publication Analysis

Top Keywords

disease severity
24
diabetes mellitus
12
mellitus hypertension
12
increased covid-19
12
reduced levels
12
levels triacylglycerols
12
increased disease
12
hypertensive patients
12
patients
10
type diabetes
8

Similar Publications

Melioidosis is a neglected tropical infection caused by the Gram-negative bacterium Burkholderia pseudomallei, which is found in soil and water across tropical countries. The infection spectrum ranges from mild localized lesions to severe sepsis. The clinical presentation, severity, and outcome are influenced by the route of infection, bacterial load, strain virulence, and specific virulence genes of B.

View Article and Find Full Text PDF

Allied prisoners of war (POWs) working on the Imperial Japanese Army's railroad from Thailand to Burma during 1943-1945 devised a blood transfusion service to rescue severely ill fellow prisoners who were otherwise unlikely to survive the war. Extant transfusion records (1,251 recipients, 1,189 donors) in ledger books held by the United Kingdom National Archives at Kew were accessed and analyzed. Survival to the end of the war in 1945 was determined from Commonwealth War Graves Commission records.

View Article and Find Full Text PDF

Background And Aims: Alcohol-related liver disease (ALD) is one of the leading causes of severe liver disease with limited pharmacological treatments for alcohol-related steatohepatitis (ASH). CD44, a glycoprotein mainly expressed in immune cells, has been implicated in multiple inflammatory diseases but has never been studied in the ALD context. We therefore studied its contribution to ASH development in mice and its expression in ALD patients.

View Article and Find Full Text PDF

Background Objectives: Scrub typhus is an acute febrile zoonotic disease caused by the obligate intracellular gram-negative bacteria Orientia tsutsugamushi. Growing data over the last few years on the Indian subcontinent suggest that it is one of the most widespread but under-reported diseases. The study aimed to document the clinical and paraclinical profile and evaluate complications of scrub typhus in severe and nonsevere pediatric age groups.

View Article and Find Full Text PDF

Background Objectives: In malaria infection, quantifying blood parasitemia is a critical step for evaluating the severity of the disease. This has generally been conducted manually, and thus, its accuracy depends on the expertise of technicians. There is an urgent need for an automated technique to overcome manual errors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!