Phosphate concentration in natural water has been used as a water quality indicator, as it is one of the major nutrients for aquatic plants. However, the traditional phosphomolybdenum blue (PMB) method has limited sensitivity for visual or camera-based detection, leading to underestimation of the phosphate concentration. We present an ultralow-cost, rapid field preconcentration and digital image colorimetric sensing of low-concentration phosphate method for water analysis. A novel hand-powered paper centrifuge (paperfuge) is used for sample preparation and preconcentration. This paperfuge is made of two circular paper discs and a string. Six centrifuge tubes (CTs) originally used as glue dispensing tips with a sample capacity of ∼230 L, are loaded on the paperfuge. After sampling, phosphate in the water sample is reacted to form PMB. Then, the reacted sample is drawn into a CT using an autopipette before the CT bottom is sealed by glue. After Oasis® HLB sorbents are added through the top of the CT, the CT top is also sealed with glue. The HLB sorbents adsorb PMB and are accumulated in the CT tip through centrifugation. The CT tips are cut and analyzed with the ImageJ software. It was found that the blue color intensity of sorbents is in a linear relationship to the phosphate concentration, with a linear range of 0-5 M ( = 0.9921) and limit of detection of 0.19 M. In addition, this method has been applied to in-field water analysis. The results are in agreement with the standard PMB method.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8786554 | PMC |
http://dx.doi.org/10.1155/2022/7359197 | DOI Listing |
J Biol Eng
January 2025
Department of Aquatic Animals and Diseases, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye.
Background: Synthesis of organic@inorganic hNFs is achieved by the coordination of organic compounds containing amine, amide, and diol groups with bivalent metals. The use of bio-extracts containing these functional groups instead of expensive organic inputs such as DNA, enzymes, and protein creates advantages in terms of cost and applicability. In this study, the application potentials (antioxidant, antibacterial, anticancer, guaiacol, anionic, and cationic dye degradation) of hybrid (organic@inorganic) nanoflowers (hNFs) synthesized with Cu and snakeskin (SSS) were proposed.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of California Irvine, Irvine, CA, USA.
Background: Our goal is to identify conditions to produce structurally homogeneous and reproducible preparations of different polymorphic structures. Here we investigate the effect of several widely used methods for solubilizing Abeta on the subsequent aggregation process.
Method: Aliquots of HPLC-purified synthetic Aβ40 in originally lyophilized from acetonitrile/water (AcN) 50% v/v were dissolved in hexafluoroisopropanol (HFIP) 100%, AcN 50% v/v, NH4OH 2%, or 50 mM Phosphate buffer (PB), re-aliquoted and lyophilized.
Biomater Sci
January 2025
Department of Periodontology, College of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea.
Infected alveolar bone defects pose challenging clinical issues due to disrupted intrinsic healing mechanisms. Thus, the employment of advanced biomaterials enabling the modulation of several aspects of bone regeneration is necessary. This study investigated the effect of multi-functional nanoparticles on anti-inflammatory/osteoconductive characteristics and bone repair in the context of inflamed bone abnormalities.
View Article and Find Full Text PDFSci Rep
January 2025
Egyptian Drug Authority (EDA), Giza, 35521, Egypt.
The present study applied a combined analytical quality-by-design and green analytical chemistry approach to develop an HPLC method for the determination of four cephalosporin pharmaceuticals in both their formulations and water samples. These drugs include ceftriaxone, cefotaxime, ceftazidime and cefoperazone. A Box-Behnken experimental design was employed to optimize three chromatographic parameters: mobile phase composition, flow rate and buffer pH.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Soil Science, Tarbiat Modares University, Tehran, 14115-336, Iran.
A two-year study has been conducted to optimize saffron cormlet production in a soilless cultivation system. Variations in the concentration of phosphate, boron, and irrigation events were assessed in the first year. Subsequently, after optimizing the substrate composition, the effects of nutrient solution volume and the concentration of nitrate, iron, and boron were investigated on the yield and weight of cormlets and leaves, photosynthetic activities, and productivity of nutrient solutions in the second year.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!