Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
While antiphishing techniques have evolved over the years, phishing remains one of the most threatening attacks on current network security. This is because phishing exploits one of the weakest links in a network system-people. The purpose of this research is to predict the possible phishing victims. In this study, we propose the multidimensional phishing susceptibility prediction model (MPSPM) to implement the prediction of user phishing susceptibility. We constructed two types of emails: legitimate emails and phishing emails. We gathered 1105 volunteers to join our experiment by recruiting volunteers. We sent these emails to volunteers and collected their demographic, personality, knowledge experience, security behavior, and cognitive processes by means of a questionnaire. We then applied 7 supervised learning methods to classify these volunteers into two categories using multidimensional features: susceptible and nonsusceptible. The experimental results indicated that some machine learning methods have high accuracy in predicting user phishing susceptibility, with a maximum accuracy rate of 89.04%. We conclude our study with a discussion of our findings and their future implications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8786481 | PMC |
http://dx.doi.org/10.1155/2022/7058972 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!