Magnetotactic bacteria (MTB) are microorganisms thriving mostly at oxic-anoxic boundaries of aquatic habitats. MTB are efficient in biomineralising or sequestering diverse elements intracellularly, which makes them potentially important actors in biogeochemical cycles. Lake Pavin is a unique aqueous system populated by a wide diversity of MTB with two communities harbouring the capability to sequester not only iron under the form of magnetosomes but also phosphorus and magnesium under the form of polyphosphates, or calcium carbonates, respectively. MTB thrive in the water column of Lake Pavin over a few metres along strong redox and chemical gradients representing a series of different microenvironments. In this study, we investigate the relative abundance and the vertical stratification of the diverse populations of MTB in relation to environmental parameters, by using a new method coupling a precise sampling for geochemical analyses, MTB morphotype description, and measurement of the physicochemical parameters. We assess the ultrastructure of MTB as a function of depth using light and electron microscopy. We evidence the biogeochemical niche of magnetotactic cocci, capable of sequestering large PolyP inclusions below the oxic-anoxic transition zone. Our results suggest a tight link between the S and P metabolisms of these bacteria and pave the way to better understand the implication of MTB for the P cycle in stratified environmental conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8786505 | PMC |
http://dx.doi.org/10.3389/fmicb.2021.789134 | DOI Listing |
Mol Ecol Resour
April 2024
Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, CNRS, Sorbonne Universités, Banyuls sur Mer, France.
The permanently anoxic waters in meromictic lakes create suitable niches for the growth of bacteria using sulphur metabolisms like sulphur oxidation. In Lake Pavin, the anoxic water mass hosts an active cryptic sulphur cycle that interacts narrowly with iron cycling, however the metabolisms of the microorganisms involved are poorly known. Here we combined metagenomics, single-cell genomics, and pan-genomics to further expand our understanding of the bacteria and the corresponding metabolisms involved in sulphur oxidation in this ferruginous sulphide- and sulphate-poor meromictic lake.
View Article and Find Full Text PDFEnviron Microbiol
December 2023
CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France.
Microbiome
January 2023
Innovative Genomics Institute, University of California, Berkeley, CA, USA.
Background: Permanently stratified lakes contain diverse microbial communities that vary with depth and so serve as useful models for studying the relationships between microbial community structure and geochemistry. Recent work has shown that these lakes can also harbor numerous bacteria and archaea from novel lineages, including those from the Candidate Phyla Radiation (CPR). However, the extent to which geochemical stratification differentially impacts carbon metabolism and overall genetic potential in CPR bacteria compared to other organisms is not well defined.
View Article and Find Full Text PDFMol Ecol
November 2022
Université du Littoral Côte d'Opale, CNRS, Univ. Lille, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Wimereux, France.
Fungal parasitism is common in plankton communities and plays a crucial role in the ecosystem by balancing nutrient cycling in the food web. Previous studies of aquatic ecosystems revealed that zoosporic chytrid epidemics represent an important driving factor in phytoplankton seasonal successions. In this study, host-parasite dynamics in Lake Pavin (France) were investigated during the spring diatom bloom while following chytrid epidemics using next generation sequencing (NGS).
View Article and Find Full Text PDFFront Microbiol
January 2022
Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590 - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France.
Magnetotactic bacteria (MTB) are microorganisms thriving mostly at oxic-anoxic boundaries of aquatic habitats. MTB are efficient in biomineralising or sequestering diverse elements intracellularly, which makes them potentially important actors in biogeochemical cycles. Lake Pavin is a unique aqueous system populated by a wide diversity of MTB with two communities harbouring the capability to sequester not only iron under the form of magnetosomes but also phosphorus and magnesium under the form of polyphosphates, or calcium carbonates, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!