Purpose: Tumor deposits (TDs) are acknowledged negative prognostic factors in colorectal cancer (CRC), and their pathogenesis remains a puzzle. This study aimed to construct and validate a nomogram available for preoperative TDs prediction in CRC patients.
Patients And Methods: Patients from the Surveillance, Epidemiology, and End Results (SEER) and the cancer genome atlas (TCGA) databases were randomly divided into training and validation sets according to the sample size ratio of 7:3. Univariate logistic regression was performed for identifying differentially expressed microRNAs between TDs and non-TDs. Nomograms for TDs prediction were developed from the multivariate logistic regression model with least absolute shrinkage and selection operator and were validated internally in terms of accuracy, calibration, and clinical utility. Based on the target genes, pathways tightly associated with TDs were selected using enrichment analysis.
Results: Six clinicopathologic factors and expressions of six microRNAs (miR-614, miR-1197, miR-4770, miR-3136, miR-3173, and miR-4636) differed significantly between TDs and non-TDs CRC patients from the SEER and TCGA training sets. We compared potential prediction discrimination between two nomograms: a clinicopathologic nomogram and a six-microRNA signature nomogram. The six-microRNA signature nomogram revealed better accuracy than the clinicopathologic one for TDs prediction (AUC values of 0.96 and 0.93 in the validation cohort). The calibration plots and decision curve analysis demonstrated that the six-microRNA signature nomogram had better validity and a greater prognostic benefit versus the clinicopathologic one for TDs prediction. Calcium signaling pathways were closely associated with roles of the six microRNAs in TDs of CRC patients.
Conclusion: The six-microRNA signature nomogram can be used as an efficient tool for preoperative TDs prediction in CRC patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8785134 | PMC |
http://dx.doi.org/10.2147/IJGM.S346790 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!