The Living Planet Index does not measure abundance.

Nature

Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.

Published: January 2022

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03708-8DOI Listing

Publication Analysis

Top Keywords

living planet
4
planet measure
4
measure abundance
4
living
1
measure
1
abundance
1

Similar Publications

Accurately representing the relationships between nitrogen supply and photosynthesis is crucial for reliably predicting carbon-nitrogen cycle coupling in Earth System Models (ESMs). Most ESMs assume positive correlations amongst soil nitrogen supply, leaf nitrogen content, and photosynthetic capacity. However, leaf photosynthetic nitrogen demand may influence the leaf nitrogen response to soil nitrogen supply; thus, responses to nitrogen supply are expected to be the largest in environments where demand is the greatest.

View Article and Find Full Text PDF

Current rates of habitat and biodiversity loss, and the threat they pose to ecological and economic productivity, would be considered a global emergency even if they were not occurring during a period of rapid anthropogenic climate change. Diversity at all levels of biological organization, both within and among species, and across genomes and communities, is critical for the resilience of the world's ecosystems in the face of such change. However, it remains an urgent scientific challenge to understand how biodiversity underpins these ecological outputs, how patterns of biodiversity are being affected by current threats, and how and where such biodiversity contributes most directly to human economies, well-being and social justice.

View Article and Find Full Text PDF

The Living Planet Index (LPI) is a leading global biodiversity indicator based on vertebrate population time series. Since it was first developed over 25 years ago, the LPI has been widely used to indicate trends in biodiversity globally, primarily reported every two years in the Living Planet Report. Based on relative abundance, a sensitive metric of biodiversity change, the LPI has also been applied as a tool for informing policy and used in assessments for several multilateral conventions and agreements, including the Convention on Biological Diversity 2010 Biodiversity Target and Aichi targets.

View Article and Find Full Text PDF

Bending the curve of biodiversity loss requires a 'satnav' for nature.

Philos Trans R Soc Lond B Biol Sci

January 2025

Biodiversity Futures Lab, Natural History Museum, London SW7 5BD, UK.

Georgina Mace proposed bending the curve of biodiversity loss as a fitting ambition for the Convention on Biological Diversity. The new Global Biodiversity Monitoring Framework (GBMF) may increase the chances of meeting the goals and targets in the Kunming-Montreal Global Biodiversity Framework (KMGBF), which requires bending the curve. To meet the outcome goals of KMGBF, the GBMF should support adaptive policy responses to the state of biodiversity, which in turn requires a 'satnav' for nature.

View Article and Find Full Text PDF

An African perspective to biodiversity conservation in the twenty-first century.

Philos Trans R Soc Lond B Biol Sci

January 2025

Georgina Mace Centre for the Living Planet, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK.

Africa boasts high biodiversity while also being home to some of the largest and fastest-growing human populations. Although the current environmental footprint of Africa is low compared to other continents, the population of Africa is estimated at around 1.5 billion inhabitants, representing nearly 18% of the world's total population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!