CCAAT/enhancer-binding protein α (C/EBPα) is a transcription factor abundantly expressed in the liver and white adipose tissue (WAT). In this study, we investigated the mechanism by which C/EBPα regulates the lipase family member N (Lipn) gene in the mouse liver. Mouse Lipn consists of non-coding exon 1 and the translation start site located in exon 2. Lipn expression in the fatty liver of ob/ob mice was significantly higher than that in OB/OB mice and was significantly repressed by liver-specific C/EBPα deficiency. Lipn expression in ob/ob mice was detected in the liver, epididymal WAT (eWAT), subcutaneous WAT (sWAT), brown adipose tissue (BAT), and skeletal muscle, but not in the kidney, brain, and heart. Lipn expression in the liver, eWAT, and sWAT of wild-type mice was undetectable, although C/EBPα was highly expressed in these tissues. The database analysis revealed four putative C/EBP-responsive elements (CEBPREs), highly homologous with the typical CEBPRE consensus sequence at positions -2,686/-2,678, -1,364/-1,356, -106/-98, and -45/-37 from the transcription start site (+1) of Lipn. Reporter assays using reporter constructs with serial or internal deletions of the 5'-flanking regions of Lipn showed that two functional CEBPREs (-106/-98 and -45/-37) in the Lipn promoter region are essential for enhancing Lipn transcriptional activity by C/EBPα. Electrophoretic mobility shift assay showed that C/EBPα/β binds to CEBPRE (-106/-98). These results suggest that C/EBPα and type 2 diabetic environment may be required for hepatic Lipn expression.

Download full-text PDF

Source
http://dx.doi.org/10.1507/endocrj.EJ21-0465DOI Listing

Publication Analysis

Top Keywords

lipn expression
16
ob/ob mice
12
lipn
10
lipase family
8
family member
8
ccaat/enhancer-binding protein
8
type diabetic
8
mouse liver
8
adipose tissue
8
start site
8

Similar Publications

Osteocyte function is critical for metabolism, remodelling and regeneration of bone tissue. In the present study, the roles of regulator of G protein signalling 18 (RGS18) were assessed in the regulation of osteocyte proliferation and bone formation. Target genes and signalling pathways were screened using the Gene Expression Omnibus (GEO) database and Gene Set Enrichment Analysis (GSEA).

View Article and Find Full Text PDF

Background: Systemic Sclerosis (SSc) is an autoimmune disease that is characterized by vasculopathy, digital ulcers, Raynaud's phenomenon, renal failure, pulmonary arterial hypertension, and fibrosis. Regulatory T (Treg) cell subsets have recently been found to play crucial roles in SSc with interstitial lung disease (ILD) pathogenesis. This study investigates the molecular mechanism of Treg-related genes in SSc patients through bioinformatic analyses.

View Article and Find Full Text PDF

Integrated analyses reveal evolutionarily conserved and specific injury response genes in dorsal root ganglion.

Sci Data

November 2022

Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China.

Rodent dorsal root ganglion (DRG) is widely used for studying axonal injury. Extensive studies have explored genome-wide profiles on rodent DRGs under peripheral nerve insults. However, systematic integration and exploration of these data still be limited.

View Article and Find Full Text PDF

CCAAT/enhancer-binding protein α (C/EBPα) is a transcription factor abundantly expressed in the liver and white adipose tissue (WAT). In this study, we investigated the mechanism by which C/EBPα regulates the lipase family member N (Lipn) gene in the mouse liver. Mouse Lipn consists of non-coding exon 1 and the translation start site located in exon 2.

View Article and Find Full Text PDF

One of the most challenging tasks in modern science is the development of systems biology models: Existing models are often very complex but generally have low predictive performance. The construction of high-fidelity models will require hundreds/thousands of cycles of model improvement, yet few current systems biology research studies complete even a single cycle. We combined multiple software tools with integrated laboratory robotics to execute three cycles of model improvement of the prototypical eukaryotic cellular transformation, the yeast () diauxic shift.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!