Histological imaging is essential for the biomedical research and clinical diagnosis of human cancer. Although optical microscopy provides a standard method, it is a persistent goal to develop new imaging methods for more precise histological examination. Here, we use nitrogen-vacancy centers in diamond as quantum sensors and demonstrate micrometer-resolution immunomagnetic microscopy (IMM) for human tumor tissues. We immunomagnetically labeled cancer biomarkers in tumor tissues with magnetic nanoparticles and imaged them in a 400-nm resolution diamond-based magnetic microscope. There is barely magnetic background in tissues, and the IMM can resist the impact of a light background. The distribution of biomarkers in the high-contrast magnetic images was reconstructed as that of the magnetic moment of magnetic nanoparticles by employing deep-learning algorithms. In the reconstructed magnetic images, the expression intensity of the biomarkers was quantified with the absolute magnetic signal. The IMM has excellent signal stability, and the magnetic signal in our samples had not changed after more than 1.5 y under ambient conditions. Furthermore, we realized multimodal imaging of tumor tissues by combining IMM with hematoxylin-eosin staining, immunohistochemistry, or immunofluorescence microscopy in the same tissue section. Overall, our study provides a different histological method for both molecular mechanism research and accurate diagnosis of human cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8812536 | PMC |
http://dx.doi.org/10.1073/pnas.2118876119 | DOI Listing |
BioDrugs
January 2025
Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France.
Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.
View Article and Find Full Text PDFDig Dis Sci
January 2025
Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.
Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.
View Article and Find Full Text PDFClin Transl Oncol
January 2025
Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510013, Guangdong, China.
Introduction: The transporter associated with antigen processing (TAP) is a key component of the classical HLA I antigen presentation pathway. Our previous studies have demonstrated that the downregulation of TAP1 contributes to tumor progression and is associated with an increased presence of myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. However, it remains unclear whether the elevation of MDSCs leads to immune cell exhaustion in tumors lacking TAP1.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, , 11829, Cairo, Egypt.
Globally, the incidence and death rates associated with cancer persist in rising, despite considerable advancements in cancer therapy. Although some malignancies are manageable by a mix of chemotherapy, surgery, radiation, and targeted therapy, most malignant tumors either exhibit poor responsiveness to early identification or endure post-treatment survival. The prognosis for prostate cancer (PCa) is unfavorable since it is a perilous and lethal malignancy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!