Viviparity evolved independently about 150 times in vertebrates and more than 20 times in fish. Several lineages added to the protection of the embryo inside the body of the mother, the provisioning of nutrients, and physiological exchange. This often led to the evolution of a placenta. Among fish, one of the most complex systems serving the function of the placenta is the embryonal trophotaenia/ovarian luminal epithelium of the goodeid fishes. For a better understanding of this feature and others of this group of fishes, high-quality genomic resources are essential. We have sequenced the genome of the darkedged splitfin, The assembly is chromosome level and includes the X and Y Chromosomes. A large male-specific region on the Y was identified covering 80% of Chromosome 20, allowing some first inferences on the recent origin and a candidate male sex determining gene. Genome-wide transcriptomics uncovered sex-specific differences in brain gene expression with an enrichment for neurosteroidogenesis and testis genes in males. The expression signatures of the splitfin embryonal and maternal placenta showed overlap with homologous tissues including human placenta, the ovarian follicle epithelium of matrotrophic poeciliid fish species and the brood pouch epithelium of the seahorse. Our comparative analyses on the evolution of embryonal and maternal placenta indicate that the evolutionary novelty of maternal provisioning development repeatedly made use of genes that already had the same function in other tissues. In this way, preexisting modules are assembled and repurposed to provide the molecular changes for this novel trait.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896457PMC
http://dx.doi.org/10.1101/gr.275826.121DOI Listing

Publication Analysis

Top Keywords

darkedged splitfin
8
embryonal maternal
8
maternal placenta
8
placenta
5
genome biology
4
biology darkedged
4
splitfin evolution
4
evolution sex
4
sex chromosomes
4
chromosomes placentation
4

Similar Publications

Genome biology of the darkedged splitfin, , and the evolution of sex chromosomes and placentation.

Genome Res

March 2022

The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, USA.

Viviparity evolved independently about 150 times in vertebrates and more than 20 times in fish. Several lineages added to the protection of the embryo inside the body of the mother, the provisioning of nutrients, and physiological exchange. This often led to the evolution of a placenta.

View Article and Find Full Text PDF

Metabolic rate and hypoxia tolerance in Girardinichthys multiradiatus (Pisces: Goodeidae), an endemic fish at high altitude in tropical Mexico.

Comp Biochem Physiol A Mol Integr Physiol

January 2020

Laboratorio de Ecofisiología Animal, Facultad de Ciencias, Universidad Autónoma del Estado de México, El Cerrillo Piedras Blancas carretera Toluca-Ixtlahuaca km 14.5, CP 50200 Toluca, Estado de México, Mexico.

The darkedged splitfin (Amarillo fish), Girardinichthys multiradiatus is a vulnerable endemic fish species inhabiting central Mexico's high altitude Upper Lerma Basin, where aquatic hypoxia is exacerbated by low barometric pressures (lower Ps), large aquatic oxygen changes, poor aquatic systems management and urban, agricultural and industrial pollution. The respiratory physiology of G. multiradiatus under such challenging conditions is unknown - therefore the main goal of the present study was to determine metabolic rates and hypoxia tolerance to elucidate possible physiological adaptations allowing this fish to survive high altitude and increasingly eutrophic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!