The avermectin/milbemycin receptors of parasitic nematodes.

Pestic Biochem Physiol

UMR1282 Infectiologie et Santé Publique, INRAE Centre Val de Loire, 37380 Nouzilly, France. Electronic address:

Published: February 2022

Glutamate-gated chloride channels are the most important target of ivermectin and related compounds in parasitic nematodes. A small family of genes encode subunits of these channels, allowing the assembly of multiple channel subtypes; the subunit composition of most of the native receptors is unknown. The members of the gene family vary between species, making extrapolation from C. elegans to parasites difficult. Expression of recombinant receptors in Xenopus oocytes can identify subunits that have the ability to co-assemble into novel channels, but localisation data, ideally at the single-cell level, is required to confirm that these subunits are expressed in the same cells and tissues. Fortunately, recent advances in this area are starting to make this information available; this information is adding to our understanding of how the drugs act and of the possible subunit combinations that create their targets in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pestbp.2021.105010DOI Listing

Publication Analysis

Top Keywords

parasitic nematodes
8
avermectin/milbemycin receptors
4
receptors parasitic
4
nematodes glutamate-gated
4
glutamate-gated chloride
4
chloride channels
4
channels target
4
target ivermectin
4
ivermectin compounds
4
compounds parasitic
4

Similar Publications

Morphological and molecular analysis of Spinitectus notopteri (Nematoda: Cystidicolidae) from freshwater fish in Thailand.

Folia Parasitol (Praha)

December 2024

Faculty of Agriculture and Technology, Nakhon Phanom University, Nakhon Phanom, Thailand *Address for correspondence: K. Kamchoo, Faculty of Innovative Agriculture, Fisheries and Food, Prince of Songkla University, Surat Thani Campus, Surat Thani, Thailand. Email: ORCID-iD: 0000-0002-8774-3215.

The nematode Spinitectus notopteri Karve et Naik, 1951 was collected from two species of freshwater fish belonging to the family Notopteridae, namely Chitala ornata (Gray) and Notopterus notopterus (Pallas), at Khun Thale Swamp in Surat Thani province of southern Thailand. The overall prevalence of the parasite was found to be 88% (94 fish infected/106 fish examined). A higher prevalence was found in C.

View Article and Find Full Text PDF

The caribou ( sspp.) is a keystone wildlife species in northern ecosystems that plays a central role in the culture, spirituality and food security of Indigenous People. The Arctic is currently experiencing an unprecedented rate of climate change, including warming temperatures and altered patterns of precipitation.

View Article and Find Full Text PDF

Nematophagous fungi as biological control agents of parasitic nematodes in soils of wildlife parks.

Int J Parasitol Parasites Wildl

April 2025

Institute of Veterinary Medicine, Georg-August-University of Goettingen, Burckhardtweg 2, 37077, Goettingen, Germany.

Infections with soil-transmitted helminths pose a significant threat to wildlife in enclosures, where transmission of these parasitic larvae is easier due to the limited space. Nematophagous fungi offer a promising solution as they can naturally control these nematodes. In this study, three nematophagous fungi (, , ) purchased from the non-profit global biological resource center ATCC were tested for their suitability as biological control agents.

View Article and Find Full Text PDF

Gastrointestinal tract (GIT) nematode infections have a significant negative impact on the well-being and productivity of animals. While it is common for a host to be co-infected with multiple species of nematode parasites simultaneously, there is a lack of effective tools to study the composition of these complex parasite communities. We describe the application of the "nemabiome" amplicon sequencing to study parasitic GIT nematode communities in captive wildlife at the National Zoological Garden, South African National Biodiversity Institute.

View Article and Find Full Text PDF

Detailed characterisation of the Co-Smad protein in liver fluke .

J Helminthol

January 2025

Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.

Fasciolosis, caused by the liver flukes and , is a zoonotic parasitic disease associated with substantial economic losses in livestock. The transforming growth factor-beta signalling pathway is implicated in developmental processes and biological functions throughout the animal kingdom, including the spp. It may also mediate host-helminth interactions during infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!