As the resident immune cells in the central nervous system, microglia play an important role in the maintenance of its homeostasis. Dysregulation of microglia has been associated with the development and maintenance of chronic pain. However, the relevant molecular pathways remain poorly defined. In this study, we used a mass spectrometry-based proteomic approach to screen potential changes of histone protein modifications in microglia isolated from the brain of control and cisplatin-induced neuropathic pain adult C57BL/6J male mice. We identified several novel microglial histone modifications associated with pain, including statistically significantly decreased histone H3.1 lysine 27 mono-methylation (H3.1K27me1, 54.8% of control) and H3 lysine 56 tri-methylation (7.5% of control), as well as a trend suggesting increased H3 tyrosine 41 nitration. We further investigated the functional role of H3.1K27me1 and found that treatment of cultured microglial cells for 4 consecutive days with 1-10 μM of NCDM-64, a potent and selective inhibitor of lysine demethylase 7A, an enzyme responsible for the demethylation of H3K27me1, dose-dependently elevated its levels with a greater than a two-fold increase observed at 10 μM compared to vehicle-treated control cells. Moreover, pretreatment of mice with NCDM-64 (10 or 25 mg/kg/day, i.p.) prior to cisplatin treatment prevented the development of neuropathic pain in mice. The identification of specific chromatin marks in microglia associated with chronic pain may yield critical insight into the contribution of microglia to the development and maintenance of pain, and opens new avenues for the development of novel nonopioid therapeutics for the effective management of chronic pain.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.202100137DOI Listing

Publication Analysis

Top Keywords

chronic pain
16
histone modifications
8
modifications microglia
8
pain
8
microglia associated
8
development maintenance
8
neuropathic pain
8
microglia
6
novel histone
4
microglia derived
4

Similar Publications

The evidence on how touch-based therapy acts on the brain activity opens novel cues for the treatment of chronic pain conditions for which no definitive treatment exists. Touch-based therapies, particularly those involving C-tactile (CT)-optimal touch, have gained increasing attention for their potential in modulating pain perception and improving psychological well-being. While previous studies have focused on the biomechanical effects of manual therapy, recent research has shifted towards understanding the neurophysiological mechanisms underlying these interventions.

View Article and Find Full Text PDF

Involvement of the Ipsilateral Tongue, an Intraoral Structure of Referred Pain due to Entrapment of the Greater Occipital Nerve.

Case Rep Neurol Med

December 2024

Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

This study reports a rare case of referred pain in the trigeminal nerve distribution caused by entrapment of the greater occipital nerve (GON). Notably, the pain extended to the ipsilateral tongue, an unusual intraoral involvement. GON entrapment can lead to sensitization in secondary nociceptive neurons within the trigeminocervical complex (TCC), which receives signals from both trigeminal and occipital nerves, causing referred facial pain.

View Article and Find Full Text PDF

Objective: To present the clinical result of spinal fixation system made entirely of Carbon-Fiber-Reinforced (CFR)-Hybrid Polyaryl-Ether-Ether-Ketone (PEEK).

Summary Of Background Data: Fusion surgery has been used to treat chronic low back pain caused by degenerative disk disease (DDD). The traditional pedicle screw system made of titanium, though biocompatible, can lead to complications, such as stress shielding and implant failure.

View Article and Find Full Text PDF

Background: The prevalence of chronic wounds is expected to rise with the increasing elderly population in the society. This rise in prevalence of chronic wounds comes with its consequences such as wound pain and interference with activities of daily living. There's a paucity of data on the impact of chronic wounds in our clime.

View Article and Find Full Text PDF

Temporal changes of spinal microglia in murine models of neuropathic pain: a scoping review.

Front Immunol

December 2024

Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.

Neuropathic pain (NP) is an ineffectively treated, debilitating chronic pain disorder that is associated with maladaptive changes in the central nervous system, particularly in the spinal cord. Murine models of NP looking at the mechanisms underlying these changes suggest an important role of microglia, the resident immune cells of the central nervous system, in various stages of disease progression. However, given the number of different NP models and the resource limitations that come with tracking longitudinal changes in NP animals, many studies fail to truly recapitulate the patterns that exist between pain conditions and temporal microglial changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!