This paper presents a new method for fast reconstruction (compatible with in-beam use) of deposited dose during proton therapy using data acquired from a PET scanner. The most innovative feature of this novel method is the production of noiseless reconstructed dose distributions from which proton range can be derived with high precision.A new MLEM & simulated annealing (MSA) algorithm, developed especially in this work, reconstructs the deposited dose distribution from a realistic pre-calculated activity-dose dictionary. This dictionary contains the contribution of each beam in the plan to the 3D activity and dose maps, as calculated by a Monte Carlo simulation. The MSA algorithm, usinginformation of the treatment plan, seeks for the linear combination of activities of the precomputed beams that best fits the observed PET data, obtaining at the same time the deposited dose.the method has been tested using simulated data to determine its performance under 4 different test cases: (1) dependency of range detection accuracy with delivered dose, (2) in-beam versus offline verification, (3) ability to detect anatomical changes and (4) reconstruction of a realistic spread-out Bragg peak. The results show the ability of the method to accurately reconstruct doses from PET data corresponding to 1 Gy irradiations, both in intra-fraction and inter-fraction verification scenarios. For this dose level (1 Gy) the method was able to spot range variations as small as 0.6 mm.out method is able to reconstruct dose maps with remarkable accuracy from clinically relevant dose levels down to 1 Gy. Furthermore, due to the noiseless nature of reconstructed dose maps, an accuracy better than one millimeter was obtained in proton range estimates. These features make of this method a realistic option for range verification in proton therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/ac4efc | DOI Listing |
Phys Med Biol
January 2025
Radiology, Stanford University, 1201 Welch Rd, P270, Stanford, California, 94305-6104, UNITED STATES.
Radiation dose and diagnostic image quality are opposing constraints in x-ray CT. Conventional methods do not fully account for organ-level radiation dose and noise when considering radiation risk and clinical task. In this work, we develop a pipeline to generate individualized organ-specific dose and noise at desired dose levels from clinical CT scans.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China. Electronic address:
The co-existence of microplastics (MPs) and organic pollutants on agricultural ecosystems pose potential implications for both food safety and environmental integrity. The combined effects of MPs with Dechlorane Plus (DP), a newly listed banned flame retardant, remain unknown. This study explores the biological responses of soybean plants to exposure from polyethylene (PE) and polyvinyl chloride (PVC) MPs and DP.
View Article and Find Full Text PDFPhys Med
January 2025
Department of Radiation Oncology, The Third Affiliated Hospital, Sun Yan-Sen University, Guangzhou 510630, China. Electronic address:
A preliminary study was conducted using electronic portal imaging device (EPID) based dose verification in pre-treatment and in vivo dose reconstruction modes for breast cancer intensity-modulated radiation therapy (IMRT) technique with known repositioning set-up errors. For 43 IMRT plans, the set-up errors were determined from 43 sets of EPID images and 258 sets of cone beam computed tomography images. In-house developed Edose software was used to reconstruct the dose distribution using the pre-treatment and on-treatment (in vivo) EPID acquired fluence maps.
View Article and Find Full Text PDFCardiovasc Ther
January 2025
Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital of Ningbo University, No. 57, Xingning Rd, Ningbo City 315041, Zhejiang Province, China.
Doxorubicin (DOX) is a widely used antitumor drug; however, its use is limited by the risk of serious cardiotoxicity. Dehydroevodiamine (DHE) is a quinazoline alkaloid which has antiarrhythmic effects. The aim of this study was to investigate the protective effect of DHE on doxorubicin-induced cardiotoxicity (DIC) and its potential mechanism.
View Article and Find Full Text PDFJHEP Rep
November 2024
Department of Radiology, University Hospital, LMU Munich, Munich, Germany.
Background & Aims: MRI guidance offers better lesion targeting for microwave ablation of liver lesions with higher soft-tissue contrast, as well as the possibility of real-time thermometry. This study aims to evaluate the correlation of real-time MR thermometry-predicted lesion volume with the ablation zone in postprocedural first-day images.
Methods: This single-center retrospective analysis evaluated prospectively included patients who underwent MRI-guided microwave ablation with real-time thermometry between December 2020 and July 2023.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!