A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biochemical and biophysical characterization of PADI4 supports its involvement in cancer. | LitMetric

Biochemical and biophysical characterization of PADI4 supports its involvement in cancer.

Arch Biochem Biophys

IDIBE, Universidad Miguel Hernández, 03202, Elche, (Alicante), Spain; Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, 03203, Elche, (Alicante), Spain. Electronic address:

Published: March 2022

AI Article Synopsis

  • PADI4 is a calcium-dependent enzyme that converts arginine to citrulline and is implicated in essential biological processes like cell differentiation and development, showing altered expression patterns in cancer cells.
  • Its expression patterns were studied in various cancer cell lines, highlighting its relationship with the tumor-suppressor protein p53 and suggesting a role in tumorigenesis.
  • Biophysical analyses revealed that PADI4's structure is pH-dependent and that it has multiple forms with different cellular locations, indicating its potential significance in cancer progression through histone citrullination.

Article Abstract

PADI4 (protein-arginine deiminase, also known as protein l-arginine iminohydrolase) is one of the human isoforms of a family of Ca-dependent proteins catalyzing the conversion of arginine to citrulline. Although the consequences of this process, known as citrullination, are not fully understood, all PADIs have been suggested to play essential roles in development and cell differentiation. They have been found in a wide range of cells and tissues and, among them, PADI4 is present in macrophages, monocytes, granulocytes and cancer cells. In this work, we focused on the biophysical features of PADI4 and, more importantly, how its expression was altered in cancer cells. Firstly, we described the different expression patterns of PADI4 in various cancer cell lines and its colocalization with the tumor-related protein p53. Secondly, we carried out a biophysical characterization of PADI4, by using a combination of biophysical techniques and in silico molecular dynamics simulations. Our biochemical results suggest the presence of several forms of PADI4 with different subcellular localizations, depending on the cancer cell line. Furthermore, PADI4 could have a major role in tumorigenesis by regulating p53 expression in certain cancer cell lines. On the other hand, the native structure of PADI4 was strongly pH-dependent both in the absence or presence of Ca, and showed two pH-titrations at basic and acidic pH values. Thus, there was a narrow pH range (from 6.5 to 8.0) where the protein was dimeric and had a native structure, supporting its role in histones citrullination. Thermal denaturations were always two-state, but guanidinium-induced ones showed that PADI4 unfolded through at least one intermediate. Our simulation results suggest that the thermal melting of PADI4 structure was rather homogenous throughout its sequence. The overall results are discussed in terms of the functional role of PADI4 in the development of cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2022.109125DOI Listing

Publication Analysis

Top Keywords

padi4
12
cancer cell
12
biophysical characterization
8
characterization padi4
8
cancer cells
8
cell lines
8
native structure
8
cancer
7
biochemical biophysical
4
padi4 supports
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!