Purpose: Verify the effect of anchor repetition in the perceptual auditory judgement of the type of vocal deviation performed by speech-language pathology (SLP) students; analyze the correlation between the amount of different vocal dimensions in the same stimuli and accuracy; investigate the correlation between type of vocal deviation and accuracy.

Methods: 54 SLP students were divided in two groups: Group with repetition (GwR), 28 students; and, Group with no repetition (GnR), 26 students. The analyzed sample counted with 220 dysphonic human voices, vowel /ε/. The GwR heard three anchor stimuli before the judgement and every 20 voices during the assessment. The GnR heard the anchor only before beginning the judgement. The anchor stimuli counted with one rough, one breathy and one strain voice. These classifications were compared with reference judgements from three expert SLPs. The intra and inter-rater reliability, the correlation between the amount of different vocal dimensions in the same stimuli and type of vocal deviation with accuracy were assessed.

Results: The accuracy between type of deviation was similar among groups. The GwR presented slightly higher intra and inter-rater reliability. The student's accuracy was inversely proportional to the amount of different vocal dimensions in the stimuli. Breathiness presented the highest accuracy and strain presented the lowest accuracy.

Conclusion: The repetition of anchor stimuli improved intra and inter-rater reliability. However, it was not effective in the accuracy of the type of vocal deviation. The amount of different vocal dimensions in the stimuli have influence in the students' accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886121PMC
http://dx.doi.org/10.1590/2317-1782/20212021064DOI Listing

Publication Analysis

Top Keywords

anchor stimuli
16
type vocal
16
vocal deviation
16
amount vocal
16
vocal dimensions
16
dimensions stimuli
16
intra inter-rater
12
inter-rater reliability
12
vocal
9
repetition anchor
8

Similar Publications

Non-canonical signaling initiated by hormone-responsive G protein-coupled receptors from subcellular compartments.

Pharmacol Ther

December 2024

Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Insititute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.. Electronic address:

G protein-coupled receptors (GPCRs), the largest family of membrane receptors in the mammalian genomes, regulate almost all known physiological processes by transducing numerous extracellular stimuli including almost two-thirds of endogenous hormones and neurotransmitters. The traditional view held that GPCR signaling occurs exclusively at the cell surface, where the receptors bind with the ligands and undergo conformational changes to recruit and activate heterotrimeric G proteins. However, with the application of advanced biochemical and biophysical techniques, this conventional model is challenged by the elucidation of spatiotemporal GPCR activation with the evidence that receptors can signal from subcellular compartments to exhibit various molecular and cellular responses with physiological and pathophysiological relevance.

View Article and Find Full Text PDF

Tooth eruption is the process whereby the developing tooth moves to its functional position in the occlusal plane and it occurs concomitantly with formation of the tooth root, which is a critical component of the tooth anchored to surrounding alveolar bone through the periodontal ligament. Post-eruptive tooth movement ensues that once occlusion is achieved, the teeth maintain their alignment within the alveolar bone to facilitate proper bite function through periodontium remodelling. Tooth overeruption presents a clinically significant issue, yet the precise mechanisms by which alterations in occlusal forces are translated into periodontal remodelling remain largely unexplored.

View Article and Find Full Text PDF

Anchoring bias in mental arithmetic.

Psychol Res

November 2024

Department of Psychology, Potsdam University, Potsdam, Germany.

Mental arithmetic is widely studied, both with symbolic digits and with non-symbolic dot patterns that require operand estimation. Several studies reported surprising biases in adults' performance with both formats while their direction (over/underestimation in addition/subtraction) remains controversial (operational momentum effect or OM; Prado & Knops, Prado and Knops, Psychonomic Bulletin & Review, in Press., 2024).

View Article and Find Full Text PDF

Transmembrane Delivery of an Aryl Azopyrazole Photo-switchable Ion Transporter Relay.

Angew Chem Int Ed Engl

November 2024

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.

Stimuli-responsive synthetic ionophores allow for spatial and temporal control over ion transport, with promise for applications in targeted therapy. Relay transporters have emerged as a new class of ion transporters - these are anchored carriers that sit in both leaflets of the bilayer and mediate transport across the membrane by passing ions between them. The relays are themselves membrane impermeable, and so must be incorporated into the membrane during vesicle preparation.

View Article and Find Full Text PDF

The use of chemiluminophores for tracing enzymatic activities in live-cell imaging has gained significant attention, making them valuable tools for diagnostic applications. Among various chemiluminophores, the phenoxy-1,2-dioxetane scaffold exhibits significant structural versatility and its activation is governed by the chemically initiated electron exchange luminescence (CIEEL) mechanism. This mechanism can be initiated by enzymatic activity, changes in pH, or other chemical stimuli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!