Background: The hemodynamic maintenance of brain-dead donors will influence the quality of the organs procured for transplantation, including the intestine. Although norepinephrine (NE) and dopamine (DA) are commonly used to sustain mean arterial pressure in humans, there are no standardized protocols for their use during maintenance of brain-dead donors. Our aim was to compare the effects of each drug, in the intestinal graft quality using a rat brain-dead donation model.
Methods: Wistar rats (N = 17) underwent brain death (BD) for 2 hours with NE (NE group) or with DA (DA group) administration; the control group was mechanically ventilated for 2 hours without BD. Jejunum biopsies were obtained at the end of the maintenance period. Histological damage was evaluated using Park-Chiu scale. Villi/crypt ratio, mucosal thickness, Goblet cell count, and villi density were evaluated using ImageJ software (US National Institutes of Health, Bethesda, MD). Barrier damage was assessed by bacterial translocation culture counting on liver samples. The inflammatory status of the intestine was evaluated by CD3+ counting by immunohistochemistry and gene expression analysis of interleukin (IL)-6, IL-22, and CXCL10.
Results: Norepinephrine-treated donors had higher focal ischemic injury in the intestinal mucosa without a substantial modification of morphometrical parameters compared with DA-treated donors. CD3+ mucosal infiltration was greater in intestines procured from brain-dead donors, being highest in NE (p ˂ 0.001). Local inflammatory mediators were affected in BD: DA and NE groups showed a trend to lower expression of IL-22, whereas CXCL10 expression was higher in NE versus control group. Brain death promoted intestinal bacterial translocation, but the use of NE resulted in the highest bacterial counting in the liver (p ˂ 0.01).
Conclusion: Our results favor the use of DA instead of NE as main vasoactive drug to manage BD-associated hemodynamic instability. Dopamine may contribute to improve the quality of the intestinal graft, by better preserving barrier function and lowering immune cell infiltration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/TA.0000000000003473 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!