The use of herbicides for weed control is very common, but some of them represent a threat to human health, are environmentally detrimental, and stimulate herbicide resistance. Therefore, using microorganisms as natural herbicides appears as a promising alternative. The mycoflorae colonizing different species of symptomatic and asymptomatic weeds were compared to characterize the possible mycoherbicidal candidates associated with symptomatic weeds. A collection of 475 symptomatic and asymptomatic plants belonging to 23 weed species was established. A metabarcoding approach based on amplification of the internal transcribed spacer (ITS) region combined with high-throughput amplicon sequencing revealed the diversity of fungal communities hosted by these weeds: 542 fungal genera were identified. The variability of the composition of fungal communities revealed a dispersed distribution of taxa governed neither by geographical location nor by the botanical species, suggesting a common core displaying nonspecific interactions with host plants. Beyond this core, specific taxa were more particularly associated with symptomatic plants. Some of these, such as , , , , are known pathogens, while others such as , , and are not, at least on crops, and constitute new tracks to be followed in the search for mycoherbicidal candidates. This approach is original because the diversity of weed-colonizing fungi has rarely been studied before. Furthermore, targeting both the ITS1 and ITS2 regions to characterize the fungal communities (i) highlighted the complementarity of these two regions, (ii) revealed a great diversity of weed-colonizing fungi, and (iii) allowed for the identification of potential mycoherbicides, among which were unexpected genera.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8939358 | PMC |
http://dx.doi.org/10.1128/aem.02177-21 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!