How to Characterize Amorphous Shapes: The Tale of a Reverse Micelle.

J Phys Chem B

Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States.

Published: February 2022

Aerosol-OT reverse micelles represent a chemical construct where surfactant molecules self-assemble to stabilize water nanodroplets 1-10 nm in diameter. Although commonly assumed to adopt a spherical shape, all-atom molecular dynamics simulations and some experimental studies predict a nonspherical shape. If these aggregates are not spherical, then what shape do they take? Because the tools needed to evaluate the shape of something that lacks regular structure, order, or symmetry are not well developed, we present a set of three intuitive metrics─coordinate-pair eccentricity, convexity, and the curvature distribution─that estimate the shape of an amorphous object, and we demonstrate their use on a simulated aerosol-OT reverse micelle. These metrics are all well-established methods and principles in mathematics, and each provides unique information about the shape. Together, these metrics provide intuitive descriptions of amorphous shapes, facilitate ways to quantify those shapes, and follow their changes over time.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.1c09439DOI Listing

Publication Analysis

Top Keywords

amorphous shapes
8
reverse micelle
8
aerosol-ot reverse
8
spherical shape
8
shape
6
characterize amorphous
4
shapes tale
4
tale reverse
4
micelle aerosol-ot
4
reverse micelles
4

Similar Publications

High-Density Polyethylene (HDPE) and Low-Density Polyethylene (LDPE) films were used to create nanoplastic (NP) models, with the shape of delamination occurring during degradation. In the case of HDPE, selective degradation occurred not only in the amorphous part, but also in the crystalline part at the same time. Some of the lamellae that extend radially to form the spherulite structure were missing during the 30-day degradation.

View Article and Find Full Text PDF

The use of scaffolds for osteochondral tissue regeneration requires an appropriate selection of materials and manufacturing techniques that provide the basis for supporting both cartilage and bone tissue formation. As scaffolds are designed to replicate a part of the replaced tissue and ensure cell growth and differentiation, implantable materials have to meet various biological requirements, e.g.

View Article and Find Full Text PDF

Effect of Temperature on Magnetoimpedance Effect and Magnetic Properties of Fe- and Co-Rich Glass-Coated Microwires.

Materials (Basel)

January 2025

Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of Basque Country, UPV/EHU, 20018 San Sebastian, Spain.

We provide new experimental studies of the temperature dependence of the giant magnetoimpedance (GMI) effect and hysteresis loops of Fe-rich and Co-rich amorphous microwires with rather different room temperature magnetic properties and GMI effect features. We observed a remarkable modification of hysteresis loops and magnetic field dependence of the GMI ratio upon heating in both of the studied samples. We observed a noticeable improvement in the GMI ratio and a change in hysteresis loops from rectangular to inclined upon heating in Fe-rich microwire.

View Article and Find Full Text PDF

Formulation, development and in vivo characterization of selegiline hydrochloride nanostructured lipid nanocarrier loaded microneedle array patch for depression.

Int J Pharm

January 2025

Department of Pharmaceutics, Bharti Vidyapeeth Deemed to be University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India. Electronic address:

Depression is a common mental condition causing depressed mood and loss of pleasure. The primary treatment approach for the management of depression consists of the use of selegiline (MAO-B) inhibitor compound. The present work aimed to develop and optimize selegiline-loaded nanostructured lipid carriers for transdermal application, utilizing a 2 full factorial design approach.

View Article and Find Full Text PDF

Background: Itraconazole (ICZ) has been approved by the FDA to treat many fungal infections including, blastomycosis, histoplasmosis, and aspergillosis. ICZ can be also used as prophylaxis in the population who are at high risk for developing systemic fungal infections, such as HIV patients, and chemotherapy patients.

Aim: However, since ICZ is a BCS Class II drug that has low solubility and high permeability, leads to low oral bioavailability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!