Nanoscale Force-Mapping-Based Quantification of Low-Abundance Methylated DNA.

Nano Lett

Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea.

Published: February 2022

Methylation changes at cytosine-guanine dinucleotide (CpG) sites in genes are closely related to cancer development. Thus, detection and quantification of low-abundance methylated DNA is critical for early diagnosis. Here, we report an atomic force microscopy (AFM)-based quantification method for DNA that contains methyl-CpG at a specific site, without any treatment to the target DNA such as chemical labeling, fluorescence tagging, or amplification. We employed AFM-tip-tethered methyl-CpG-binding proteins to probe surface-captured methylated DNA. We observed a linear correlation ( = 0.982) between the input copy number and detected copy number, in the low copy number regime (10 or fewer; subattomolar concentrations). For a mixture of methylated and nonmethylated DNA that resembles clinical samples, we were still able to quantify the methylated DNA. These results highlight the potential of our force-mapping-based quantification method for wide applications in early detection of diseases associated with methylated DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.1c04637DOI Listing

Publication Analysis

Top Keywords

methylated dna
20
copy number
12
force-mapping-based quantification
8
quantification low-abundance
8
low-abundance methylated
8
dna
8
quantification method
8
methylated
6
nanoscale force-mapping-based
4
quantification
4

Similar Publications

The association of physical function and physical performance with DNA methylation clocks in oldest-old living in Singapore - the SG90 cohort.

J Gerontol A Biol Sci Med Sci

January 2025

Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.

Deoxyribonucleic acid (DNA) methylation (DNAm) clocks estimate biological age according to DNA methylation. This study investigated the associations between measures of physical function and physical performance and ten DNAm clocks in the oldest-old in Singapore. The SG90 cohort included a subset of community-dwelling oldest-old from the Singapore Chinese Health Study (SCHS) and Singapore Longitudinal Ageing Study (SLAS).

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.

View Article and Find Full Text PDF

Decades of artificial selection have markedly enhanced egg production efficiency, yet the epigenetic underpinnings, notably DNA methylation dynamics in the gut, remain largely unexplored. Here, we investigate how breeds and developmental stages influence DNA methylation profiles in laying hens, and their potential relationship to laying performance and gut health. We compared two highly selected laying hen strains, Lohmann Brown-Classic (LB) and Lohmann LSL-Classic (LSL), which exhibited similar egg production but divergent physiological, metabolic, and immunological characteristics.

View Article and Find Full Text PDF

Flowering, a pivotal plant lifecycle event, is intricately regulated by environmental and endogenous signals via genetic and epigenetic mechanisms. Photoperiod is a crucial environmental cue that induces flowering by activating integrators through genetic and epigenetic pathways. However, the specific role of DNA methylation, a conserved epigenetic marker, in photoperiodic flowering remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!