The positively charged MoO/PDA microspheres are obtained by stacking and assembly of the sheet structure, and the negatively charged MXene nanosheets are wrapped on the surface through the principle of electrostatic self-assembly. After annealing, a nitrogen-doped carbon composite and a MXene-coated MoC wave absorber are obtained. The formation of the wrinkled surface provides a complex pore structure, and the multiple interface reflections between the nanosheets enhance the absorption performance. The existence of heterogeneous interfaces and the uneven distribution of space charges accumulated between the interfaces effectively reduce the minimum reflection loss (RL). This work explores the effects of the ratio between MoO/PDA and MXene nanosheets and loading amount on the microwave absorption properties. MoC/NC@MXene-2 obtained when the ratio of the two is 3:1 has the best absorption performance under 25% loading. The RL is -59.36 dB, and the corresponding effective absorption bandwidth (EAB) is 4.6 GHz at 2.5 mm. This work expands the new applications of MXene-based and MoC-based materials and has a guiding significance for the design of electrostatic self-assembly materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c19033 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Surgery, Center for Cancer Medicine, the Fourth Affiliated Hospital of School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
Irreversible electroporation (IRE) is a novel local tumor ablation technique that can potentially stimulate immune responses. However, IRE alone cannot effectively activate the immune system or prevent distant metastases. Therefore, this study utilized the biocompatibility of Chlorella vulgaris (C.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea.
In the search for new ultraviolet (UV) nonlinear optical (NLO) materials, two novel cadmium mixed halide compounds, (NH)CdClF and (NH)CdBrF, are successfully synthesized via hydrothermal methods. These compounds crystallize in the noncentrosymmetric (NCS) space group, R32, and are composed of distorted octahedral [CdXF] (X═Cl or Br) units, which extend into a 3D framework. Remarkably, both compounds demonstrate strong second-harmonic generation (SHG) efficiencies-3.
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC) - CONICET-UNC, Av. Juan Filloy S/N, Ciudad Universitaria, Córdoba, Argentina.
The focus of this work was to evaluate the differences between the thermal and mechanical effects generated by ultrasound waves on the properties of corn starch, which facilitate the subsequent enzymatic hydrolysis for the generation of porous starches. The results showed that both the thermal and mechanical effects have the capacity to disorganize/alter the structure of starch, impacting on its properties. Characteristics such as particle size, pasting and thermal properties (peak viscosity 1400-1800 cp.
View Article and Find Full Text PDFAcc Chem Res
January 2025
The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K.
ConspectusThe discovery of reversible hydrogenation using metal-free phosphoborate species in 2006 marked the official advent of frustrated Lewis pair (FLP) chemistry. This breakthrough revolutionized homogeneous catalysis approaches and paved the way for innovative catalytic strategies. The unique reactivity of FLPs is attributed to the Lewis base (LB) and Lewis acid (LA) sites either in spatial separation or in equilibrium, which actively react with molecules.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
August 2024
Frequency-domain near-infrared spectroscopy (FD-NIRS) is a noninvasive method for quantitatively measuring optical absorption and scattering in tissue. This study introduces structured interrogation (SI) as an interference-based approach for implementing FD-NIRS in order to enhance optical property estimation in multilayered tissues and sensitivity to deeper layers. We find that, in the presence of realistic noise, SI accurately estimates properties and chromophore concentrations with less than a 5% error.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!