Telomeres and anthropogenic disturbances in wildlife: A systematic review and meta-analysis.

Mol Ecol

Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.

Published: December 2022

Human-driven environmental changes are affecting wildlife across the globe. These challenges do not influence species or populations to the same extent and therefore a comprehensive evaluation of organismal health is needed to determine their ultimate impact. Evidence suggests that telomeres (the terminal chromosomal regions) are sensitive to environmental conditions and have been posited as a surrogate for animal health and fitness. Evaluation of their use in an applied ecological context is still scarce. Here, using information from molecular and occupational biomedical studies, we aim to provide ecologists and evolutionary biologists with an accessible synthesis of the links between human disturbances and telomere length. In addition, we perform a systematic review and meta-analysis on studies measuring telomere length in wild/wild-derived animals facing anthropogenic disturbances. Despite the relatively small number of studies to date, our meta-analysis revealed a significant small negative association between disturbances and telomere length (-0.092 [-0.153, -0.031]; n = 28; k = 159). Yet, our systematic review suggests that the use of telomeres as a biomarker to understand the anthropogenic impact on wildlife is limited. We propose some research avenues that will help to broadly evaluate their suitability: (i) further causal studies on the link between human disturbances and telomeres; (ii) investigating the organismal implications, in terms of fitness and performance, of a given telomere length in anthropogenically disturbed scenarios; and (iii) better understanding of the underlying mechanisms of telomere dynamics. Future studies in these facets will help to ultimately determine their role as markers of health and fitness in wildlife facing anthropogenic disturbances.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9790527PMC
http://dx.doi.org/10.1111/mec.16370DOI Listing

Publication Analysis

Top Keywords

telomere length
16
anthropogenic disturbances
12
review meta-analysis
8
suggests telomeres
8
health fitness
8
human disturbances
8
disturbances telomere
8
systematic review
8
facing anthropogenic
8
will help
8

Similar Publications

Clonal hematopoiesis of indeterminate potential (CHIP) is associated with increased mortality and malignancy risk, yet the determinants of clonal expansion remain poorly understood. We performed sequencing at >4,000x depth of coverage for CHIP mutations in 6,986 postmenopausal women from the Women's Health Initiative at two timepoints approximately 15 years apart. Among 3,685 mutations detected at baseline (VAF ≥ 0.

View Article and Find Full Text PDF

Telomere biology disorders (TBDs) are inherited conditions associated with multisystem manifestations. We describe clinical and functional characterisation of a novel TERT variant. Whole-genome sequencing was performed along with single length analysis ().

View Article and Find Full Text PDF

Stress and telomere length in leukocytes: Investigating the role of GABRA6 gene polymorphism and cortisol.

Psychoneuroendocrinology

January 2025

Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium. Electronic address:

Telomere length (TL) is considered a biomarker of aging, and short TL in leukocytes is related to age and stress-related health problems. Cumulative lifetime stress exposure has also been associated with shorter TL and age-related health problems, but the mechanisms are not well understood. We tested in 108 individuals whether shorter TL in leukocytes is observed in individuals with the GABRA6 TT genotype, which has been associated with dysregulation of hypothalamic-pituitary-adrenal axis activity (the main biological stress system) compared to the CC genotype.

View Article and Find Full Text PDF

We build and study an individual based model of the telomere length's evolution in a population across multiple generations. This model is a continuous time typed branching process, where the type of an individual includes its gamete mean telomere length and its age. We study its Malthusian's behaviour and provide numerical simulations to understand the influence of biologically relevant parameters.

View Article and Find Full Text PDF

Telomere shortening ultimately causes replicative senescence. However, identifying the mechanisms driving replicative senescence in cell populations is challenging due to the heterogeneity of telomere lengths and the asynchrony of senescence onset. Here, we present a mathematical model of telomere shortening and replicative senescence in Saccharomyces cerevisiae which is quantitatively calibrated and validated using data of telomerase-deficient single cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!