Neural stem cells (NSCs) are responsible for maintaining the nervous system and repairing damages. Utility of NSCs could provide a novel solution to treat neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. However, we have no idea the exact phenotypic and functional characteristics of NSCs and their precise role in geriatric neurological and aging-related diseases. In this study, C57BL/6 mice were used to isolate and identify CD133GFAPCD117Sca1 cells in the hippocampal dentate gyrus region of the mouse brain as a novel neural stem cell population, in terms of cell phenotype, self-renewal capacity, and differentiation capability. With increasing in aging, the function, total cell number, and self-renewal capacity of CD133GFAPCD117Sca1 cells decreased, and the activity of differentiated cells also decreased. Meanwhile, we investigated differentially expressed genes in order to further classify their gene signature and pathways associated with their functional changes. Taken together, these findings demonstrate the existence of a rare population of NSCs in the hippocampal dentate gyrus region. Identification of specific NSCs offers ample opportunities for alleviating neural diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-021-04339-3DOI Listing

Publication Analysis

Top Keywords

neural stem
12
stem cells
8
cd133gfapcd117sca1 cells
8
hippocampal dentate
8
dentate gyrus
8
gyrus region
8
self-renewal capacity
8
cells decreased
8
cells
5
nscs
5

Similar Publications

Background: Real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) is a powerful tool for analysing target gene expression in biological samples. To achieve reliable results by RT-qPCR, the most stable reference genes must be selected for proper data normalisation, particularly when comparing cells of different types. We aimed to choose the least variable candidate reference genes among eight housekeeping genes tested within a set of human cancer cell lines (HeLa, MCF-7, SK-UT-1B, A549, A431, SK-BR-3), as well as four lines of normal, non-malignant mesenchymal stromal cells (MSCs) of different origins.

View Article and Find Full Text PDF

Low-intensity transcranial ultrasound stimulation (TUS) is a noninvasive technique that safely alters neural activity, reaching deep brain areas with good spatial accuracy. We investigated the effects of TUS in macaques using a recent metric, the synergy minus redundancy rank gradient, which quantifies different kinds of neural information processing. We analyzed this high-order quantity on the fMRI data after TUS in two targets: the supplementary motor area (SMA-TUS) and the frontal polar cortex (FPC-TUS).

View Article and Find Full Text PDF

Bioprinting has emerged as a powerful manufacturing platform for tissue engineering, enabling the fabrication of 3D living structures by assembling living cells, biological molecules, and biomaterials into these structures. Among various biomaterials, hydrogels have been increasingly used in developing bioinks suitable for 3D bioprinting for diverse human body tissues and organs. In particular, hydrogel blends combining gelatin and gelatin methacryloyl (GelMA; "GG hydrogels") receive significant attention for 3D bioprinting owing to their many advantages, such as excellent biocompatibility, biodegradability, intrinsic bioactive groups, and polymer networks that combine the thermoresponsive gelation feature of gelatin and chemically crosslinkable attribute of GelMA.

View Article and Find Full Text PDF

Chronic complete spinal cord injury (SCI) is difficult to treat because of scar formation and cavitary lesions. While human iPS cell-derived neural stem/progenitor cell (hNS/PC) therapy shows promise, its efficacy is limited without the structural support needed to address cavitary lesions. Our study investigated a combined approach involving surgical scar resection, decellularized extracellular matrix (dECM) hydrogel as a scaffold, and hNS/PC transplantation.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating disease that results in motor, sensory, cognitive, and affective deficits. Hippocampal demyelination, a common occurrence in MS, is linked to impaired cognitive function and mood. Despite this, the precise mechanisms underlying cognitive impairments in MS remain elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!