The validity of research results depends on the reliability of analysis methods. In recent years, there have been concerns about the validity of research that uses diffusion-weighted MRI (dMRI) to understand human brain white matter connections , in part based on the reliability of analysis methods used in this field. We defined and assessed three dimensions of reliability in dMRI-based tractometry, an analysis technique that assesses the physical properties of white matter pathways: (1) reproducibility, (2) test-retest reliability, and (3) robustness. To facilitate reproducibility, we provide software that automates tractometry (https://yeatmanlab.github.io/pyAFQ). In measurements from the Human Connectome Project, as well as clinical-grade measurements, we find that tractometry has high test-retest reliability that is comparable to most standardized clinical assessment tools. We find that tractometry is also robust: showing high reliability with different choices of analysis algorithms. Taken together, our results suggest that tractometry is a reliable approach to analysis of white matter connections. The overall approach taken here both demonstrates the specific trustworthiness of tractometry analysis and outlines what researchers can do to establish the reliability of computational analysis pipelines in neuroimaging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8785971 | PMC |
http://dx.doi.org/10.52294/e6198273-b8e3-4b63-babb-6e6b0da10669 | DOI Listing |
BMC Neurol
January 2025
Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, School of Medicine, College of Medicine, National Sun Yat-Sen University, No. 123 Ta-Pei Road, Niao-Sung Dist, Kaohsiung, 83305, Taiwan.
Background And Purpose: White matter hyperintensities in brain MRI are key indicators of various neurological conditions, and their accurate segmentation is essential for assessing disease progression. This study aims to evaluate the performance of a 3D convolutional neural network and a 3D Transformer-based model for white matter hyperintensities segmentation, focusing on their efficacy with limited datasets and similar computational resources.
Materials And Methods: We implemented a convolution-based model (3D ResNet-50 U-Net with spatial and channel squeeze & excitation) and a Transformer-based model (3D Swin Transformer with a convolutional stem).
Cogn Affect Behav Neurosci
January 2025
Departamento de Psicología ClínicaPsicobiología y MetodologíaFacultad de Psicología, Universidad de La Laguna, La Laguna, 38200, Tenerife, Spain.
Small animal phobia (SAP) is a subtype of specific phobia characterized by an intense and irrational fear of small animals, which has been underexplored in the neuroscientific literature. Previous studies often faced limitations, such as small sample sizes, focusing on only one neuroimaging modality, and reliance on univariate analyses, which produced inconsistent findings. This study was designed to overcome these issues by using for the first time advanced multivariate machine-learning techniques to identify the neural mechanisms underlying SAP.
View Article and Find Full Text PDFCell Death Dis
January 2025
Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
Aging of the brain vasculature plays a key role in the development of neurovascular and neurodegenerative diseases, thereby contributing to cognitive impairment. Among other factors, DNA damage strongly promotes cellular aging, however, the role of genomic instability in brain endothelial cells (EC) and its potential effect on brain homeostasis is still largely unclear. We here investigated how endothelial aging impacts blood-brain barrier (BBB) function by using excision repair cross complementation group 1 (ERCC1)-deficient human brain ECs and an EC-specific Ercc1 knock out (EC-KO) mouse model.
View Article and Find Full Text PDFJ Psychiatry Neurosci
January 2025
From the Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China (Gong, Wang, Nie, Ma, Zhou, Deng, Xie, Lyu, Chen, Kang, Liu); the Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China (Liu)
Background: Cortical morphometry is an intermediate phenotype that is closely related to the genetics and onset of major depressive disorder (MDD), and cortical morphometric networks are considered more relevant to disease mechanisms than brain regions. We sought to investigate changes in cortical morphometric networks in MDD and their relationship with genetic risk in healthy controls.
Methods: We recruited healthy controls and patients with MDD of Han Chinese descent.
Spinal Cord
January 2025
McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
Study Design: Experimental Animal Study.
Objective: To continue validating an antibody which targets an epitope of neurofilament light chain (NF-L) only available during neurodegeneration and to utilize the antibody to describe the pattern of axonal degeneration 10 days post-unilateral C4 contusion in the rat.
Setting: University of Florida laboratory in Gainesville, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!