To meet the demands of the market and society, the development of structured polymeric materials for application in the medical field is constantly increasing. Over the last decades, metallic silver nanoparticles have been explored due to their antimicrobial action. Here, we aimed to incorporate metallic silver nanoparticles into polymeric pieces obtained by additive manufacture via a chemical route involving silver nitrate and sodium borohydride. Polyamide 12 membranes were obtained by selective laser sintering, which was followed by washing, pretreatment, and functionalization with the alkoxides tetraethylorthosilicate and 3-aminopropyl tetraethoxysilane. For nanoparticle preparation and incorporation, a chemical route was tested under different conditions. The samples were characterized by techniques, such as X-ray diffraction, ultraviolet-visible spectroscopy, and infrared vibrational spectroscopy. Nanoparticle formation and incorporation into the polyamide 12 membranes were demonstrated by the absorbance band at 420 nm, which indicated that the particles measured between 10 and 50 nm in size; by the X-ray diffraction peaks at 2θ = 38, 44, and 64°, which are typical of crystalline silver; and by vibrational spectroscopy, which evidenced that the nanoparticles interacted with the polyamide 12 nitrogen groups. Polyamide 12 membranes containing metallic silver nanoparticles have promising biomedical applications as antimicrobial wound dressings associated with drug carriers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8775147PMC
http://dx.doi.org/10.1007/s10971-021-05693-wDOI Listing

Publication Analysis

Top Keywords

polyamide membranes
16
metallic silver
12
silver nanoparticles
12
chemical route
8
x-ray diffraction
8
vibrational spectroscopy
8
silver
6
polyamide
5
silver nanoparticle
4
nanoparticle incorporation
4

Similar Publications

Thin-film composite polyamide (TFC PA) membranes hold promise for energy-efficient liquid separation, but achieving high permeance and precise separation membrane via a facile approach that is compatible with present manufacturing line remains a great challenge. Herein, we demonstrate the use of lignin alkali (LA) derived from waste of paper pulp as an aqueous phase additive to regulate interfacial polymerization (IP) process for achieving high performance nanofiltration (NF) membrane. Various characterizations and molecular dynamics simulations revealed that LA can promote the diffusion and partition of aqueous phase monomer piperazine (PIP) molecules into organic phase and their uniform dispersion on substrate, accelerating the IP reaction and promoting greater interfacial instabilities, thus endowing formation of TFC NF membrane with an ultrathin, highly cross-linked, and crumpled PA layer.

View Article and Find Full Text PDF

Nanofiltration (NF) membranes offer tremendous potential in wastewater reuse, desalination, and resource recovery to alleviate water scarcity and environmental contamination. However, separating micropollutants and charged ions from wastewater while maintaining high water permeation remains challenging for conventional NF membranes. Customizing diffusion and interaction behavior of monomers at membrane-forming interfaces is promising for regulating interior pore structures and surface morphology properties for polyamide NF membranes, reaching efficient screening and retaining of solutes from water.

View Article and Find Full Text PDF

Nanomorphogenesis of interlayered polyamide membranes for precise ion sieving in lithium extraction.

Water Res

December 2024

Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan. Electronic address:

Nanofiltration (NF) offers a scalable and energy-efficient method for lithium extraction from salt lakes. However, the selective separation of lithium from magnesium, particularly in brines with high magnesium concentrations, remains a significant challenge due to the close similarity in their hydrated ionic radii. The limited Li/Mgselectivity of current NF membranes is primarily attributed to insufficient control over pore size and surface charge.

View Article and Find Full Text PDF

Herein, we discuss the structure-function of biomimetic imidazole-quartet substrates (I-quartets) obtained through the adaptive self-assembly of octyl-ureido-polyol structures in polyamide membranes designed as adsorbents. Molecular dynamics (MD) and well-tempered metadynamics simulations are utilized to examine ion contaminants' adsorption process and dynamic behaviors onto alkylureido-ethylimidazoles with well-defined supramolecular structures. Moreover, the atoms-in-molecules (AIM) analysis identified multiple types of atomic interactions between the contaminant molecules and the substrates.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFASs) have recently garnered considerable concerns regarding their impacts on human and ecological health. Despite the important roles of polyamide membranes in remediating PFASs-contaminated water, the governing factors influencing PFAS transport across these membranes remain elusive. In this study, we investigate PFAS rejection by polyamide membranes using two machine learning (ML) models, namely XGBoost and multimodal transformer models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!