Fungal infections cause ~1.5 million deaths each year worldwide, and the mortality rate of disseminated candidiasis currently exceeds that of breast cancer and malaria. The major reasons for the high mortality of candidiasis are the limited number of antifungal drugs and the emergence of drug-resistant species. Therefore, a better understanding of antifungal host defense mechanisms is crucial for the development of effective preventive and therapeutic strategies. Here, we report that DOCK2 (dedicator of cytokinesis 2) promotes indispensable antifungal innate immune signaling and proinflammatory gene expression in macrophages. DOCK2-deficient macrophages exhibit decreased RAC GTPase (Rac family small GTPase) activation and ROS (reactive oxygen species) production, which in turn attenuates the killing of intracellular fungi and the activation of downstream signaling pathways. Mechanistically, after fungal stimulation, activated SYK (spleen-associated tyrosine kinase) phosphorylates DOCK2 at tyrosine 985 and 1405, which promotes the recruitment and activation of RAC GTPases and then increases ROS production and downstream signaling activation. Importantly, nanoparticle-mediated delivery of in vitro transcribed (IVT) Rac1 mRNA promotes the activity of Rac1 and helps to eliminate fungal infection in vivo. Taken together, this study not only identifies a critical role of DOCK2 in antifungal immunity via regulation of RAC GTPase activity but also provides proof of concept for the treatment of invasive fungal infections by using IVT mRNA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8787451 | PMC |
http://dx.doi.org/10.1038/s41423-021-00835-0 | DOI Listing |
Cells
March 2025
Faculté de Pharmacie, Université de Montréal, Montréal, QC H3C 3J7, Canada.
Macrophage mitochondrial dysfunction, caused by oxidative stress, has been proposed as an essential event in the progression of chronic inflammation diseases, such as atherosclerosis. The cluster of differentiation-36 (CD36) and lectin-like oxLDL receptor-1 (LOX-1) scavenger receptors mediate macrophage uptake of oxidized low-density lipoprotein (oxLDL), which contributes to mitochondrial dysfunction by sustained production of mitochondrial reactive oxygen species (mtROS), as well as membrane depolarization. In the present study, the antioxidant mechanisms of action of the selective synthetic azapeptide CD36 ligand MPE-298 have been revealed.
View Article and Find Full Text PDFCells
February 2025
Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland.
Several molecular pathways are likely involved in the regulation of cancer stem cells (CSCs) via Ras-associated C3 botulinum toxin substrate 2, RAC2, and pituitary tumor-transforming gene 1 product, PTTG1, given their roles in cellular signaling, survival, proliferation, and metastasis. RAC2 is a member of the Rho GTPase family and plays a crucial role in actin cytoskeleton dynamics, reactive oxygen species production, and cell migration, contributing to epithelial-mesenchymal transition (EMT), immune evasion, and therapy resistance. PTTG1, also known as human securin, regulates key processes such as cell cycle progression, apoptosis suppression, and EMT, promoting metastasis and enhancing cancer cell survival.
View Article and Find Full Text PDFJ Cell Biol
May 2025
Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Apical constriction is a critical cell shape change that drives cell internalization and tissue bending. How precisely localized actomyosin regulators drive apical constriction remains poorly understood. Caenorhabditis elegans gastrulation provides a valuable model to address this question.
View Article and Find Full Text PDFCell Commun Signal
March 2025
Lab 1, Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, Salamanca, 37007, Spain.
Background: Sos1 and Sos2 are guanine-nucleotide exchange factors for Ras and Rac small GTPases, which are involved in a wide range of cellular responses including proliferation and migration. We have previously shown that Sos1 and Sos2 have different effects on cell migration, but the underlying mechanisms are not clear.
Methods: Using a 4-hydroxytamoxifen-inducible conditional Sos1 mutation, here we evaluated the functional specificity or redundancy of Sos1 and Sos2 regarding the control of cell migration and dynamics of focal adhesions (FAs) in primary mouse embryonic fibroblasts (MEFs).
J Biol Chem
February 2025
Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; Department of Neurochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan. Electronic address:
RAC3 encodes a small GTPase of the Rho family, crucial for actin cytoskeleton organization and signaling pathways. De novo deleterious variants in RAC3 cause neurodevelopmental disorder with structural brain anomalies and dysmorphic facies (NEDBAF). Disease-causing variants thus far reported are thought to impact key conserved regions within RAC3, such as the P-loop, switch I/II, and G boxes, which are essential for the interaction with regulatory proteins and effectors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!