Genetic common variants associated with cerebellar volume and their overlap with mental disorders: a study on 33,265 individuals from the UK-Biobank.

Mol Psychiatry

MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.

Published: April 2022

Interest in the cerebellum is expanding given evidence of its contributions to cognition and emotion, and dysfunction in various psychopathologies. However, research into its genetic architecture and shared influences with liability for mental disorders is lacking. We conducted a genome-wide association study (GWAS) of total cerebellar volume and underlying cerebellar lobe volumes in 33,265 UK-Biobank participants. Total cerebellar volume was heritable (h = 50.6%), showing moderate genetic homogeneity across lobes (h from 35.4% to 57.1%; mean genetic correlation between lobes r ≈ 0.44). We identified 33 GWAS signals associated with total cerebellar volume, of which 6 are known to alter protein-coding gene structure, while a further five mapped to genomic regions known to alter cerebellar tissue gene expression. Use of summary data-based Mendelian randomisation further prioritised genes whose change in expression appears to mediate the SNP-trait association. In total, we highlight 21 unique genes of greatest interest for follow-up analyses. Using LD-regression, we report significant genetic correlations between total cerebellar volume and brainstem, pallidum and thalamus volumes. While the same approach did not result in significant correlations with psychiatric phenotypes, we report enrichment of schizophrenia, bipolar disorder and autism spectrum disorder associated signals within total cerebellar GWAS results via conditional and conjunctional-FDR analysis. Via these methods and GWAS catalogue, we identify which of our cerebellar genomic regions also associate with psychiatric traits. Our results provide important insights into the common allele architecture of cerebellar volume and its overlap with other brain volumes and psychiatric phenotypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9126806PMC
http://dx.doi.org/10.1038/s41380-022-01443-8DOI Listing

Publication Analysis

Top Keywords

cerebellar volume
24
total cerebellar
20
cerebellar
10
volume overlap
8
mental disorders
8
genomic regions
8
psychiatric phenotypes
8
volume
6
total
6
genetic
5

Similar Publications

Anorexia nervosa (AN) and obsessive-compulsive disorder (OCD) often share multiple similar symptoms and are highly comorbid; however, the common and distinct brain neuroanatomy of these two diseases are unclear. The current study attempted to identify the overlapping and different gray matter volume (GMV) between AN and OCD. We conducted a voxel-wise meta-analysis of GMV using the latest Seed-based d Mapping with Permutation of Subject Images Toolbox (SDM-PSI) software.

View Article and Find Full Text PDF

Background: While Alcohol Use Disorder (AUD) is frequently associated with impulsivity, its structural brain substrates are still poorly defined. The triadic model of addiction postulates that impulsive behavior is regulated by an amygdalo-striatal impulsive subcomponent, a prefrontal and cerebellar reflective subcomponent, and an insular regulatory subcomponent. The objective of this study was thus to examine the relationships between self-evaluated impulsivity and structural brain abnormalities in patients with severe AUD (sAUD) using the triadic model as a theoretical framework.

View Article and Find Full Text PDF

Objective: GM1 gangliosidosis is a rare lysosomal storage disorder characterized by the accumulation of GM1 gangliosides in neuronal cells, resulting in severe neurodegeneration. Currently, limited data exists on the brain volumetric changes associated with this disease. This study focuses on the late-infantile and juvenile subtypes of type II GM1 gangliosidosis, aiming to quantify brain volumetric characteristics to track disease progression.

View Article and Find Full Text PDF

Whole-brain gray matter volume and fractional anisotropy of the posterior thalamic radiation and sagittal stratum in healthy adults correlate with the local environment.

Neuroimage

January 2025

Open Innovation Institute, Kyoto University, Kyoto, Japan; Graduate School of Management, Kyoto University, Kyoto, Japan; Institute of Innovative Research, Tokyo Institute of Technology, Meguro, Tokyo, Japan; ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan), Chiyoda, Tokyo, Japan; Office for Academic and Industrial Innovation, Kobe University, Kobe, Japan; Brain Impact, Kyoto, Japan.

The impacts of air pollution, local climate, and urbanization on human health have been well-documented in recent studies. In this study, we combined magnetic resonance imaging (MRI) brain analysis with a questionnaire survey on the local environment in 141 healthy middle-aged men and women. Our findings reveal that a favorable environment is positively correlated with gray matter volume (GMV) in the frontal and occipital lobes, cerebellum, and whole brain, as well as with fractional anisotropy (FA) in the fornix (including the fornix stria terminalis), posterior thalamic radiation (PTR), sagittal stratum (SS), and whole brain.

View Article and Find Full Text PDF

Atrophy of cerebellum Crus I indicates poor outcome of cochlear implantation in the elderly.

Sci Rep

January 2025

Department of Otorhinolaryngology, Yonsei University College of Medicine, 50, Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.

Cochlear implantation (CI) is a highly effective treatment for profound hearing loss in elderly individuals, including those with ARHL. However, factors influencing the success of CI in the elderly population are not fully understood. Hence, we sought to investigate the association of regional cerebellar gray matter volume with effectiveness of CI in the elderly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!