The CD40/CD40L pathway plays a major role in multiple inflammatory processes involving different immune and stromal cells. Abnormal activation of this pathway has been implicated in pathogenesis of complex autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis, Graves' disease, and Sjogren's Syndrome. We completed and preclinical characterization of KPL-404, a novel humanized anti-CD40 IgG4 monoclonal antibody, to demonstrate its potency, efficacy, and pharmacokinetic profile; safety was also assessed. , KPL-404 bound recombinant human and cynomolgus monkey CD40 with comparable affinity in the nanomolar range. KPL-404 binding to cell surface CD40 did not induce antibody- or complement-mediated cytotoxicity of CD40-expressing cells. Pharmacological antagonistic activity of KPL-404 was demonstrated by inhibition of CD40-mediated downstream NF-kB activation. In the study with cynomolgus monkeys, KPL-404, administered intravenously as a single dose (10 mg/kg) or two monthly doses of 1 or 5 mg/kg, did not elicit observable safety findings, including thrombocytopenia over 8 weeks. KPL-404 engaged CD40 expressed on peripheral B cells for 2 and 4 weeks after a single administration of 5 or 10 mg/kg IV, respectively, without depletion of peripheral B cells. At 5 mg/kg IV, KPL-404 blocked both primary and secondary responses to T-cell dependent antibody responses to test antigens, KLH, and tetanus toxoid. These data illustrated the relationship between KPL-404 serum concentration and pharmacodynamic effects of CD40-targeting in circulation and in lymphoid tissues. These data support clinical development of KPL-404 in autoimmune diseases. SIGNIFICANCE STATEMENT: We aimed to develop a potent and efficacious CD40 antagonist. and findings show that KPL-404 blocks the anti-CD40 antibody that potently inhibits primary and secondary antibody responses at pharmacologically relevant concentrations, has a favorable pharmacokinetic profile, and does not deplete B cells by antibody-dependent cellular cytotoxicity or apoptosis ("nondepleting"). These findings support clinical development of KPL-404 as a potential therapeutic in autoimmune diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.121.000881DOI Listing

Publication Analysis

Top Keywords

kpl-404
12
autoimmune diseases
12
kpl-404 novel
8
novel humanized
8
monoclonal antibody
8
pharmacokinetic profile
8
peripheral cells
8
primary secondary
8
antibody responses
8
support clinical
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!