Micrometer-sized objects are widely known to exhibit chemically driven motility in systems away from equilibrium. Experimental observation of reaction-induced motility or enhancement in diffusivity at the much shorter length scale of small molecules is, however, still a matter of debate. Here, we investigate the molecular diffusivity of reactants, catalyst, and product of a model reaction, the copper-catalyzed azide-alkyne cycloaddition click reaction, and develop new NMR diffusion approaches that allow the probing of reaction-induced diffusion enhancement in nanosized molecular systems with higher accuracy than the state of the art. Following two different approaches that enable the accounting of time-dependent concentration changes during NMR experiments, we closely monitored the diffusion coefficient of reaction components during the reaction. The reaction components showed distinct changes in the diffusivity: while the two reactants underwent a time-dependent decrease in their diffusivity, the diffusion coefficient of the product gradually increased and the catalyst showed only slight diffusion enhancement within the range expected for reaction-induced sample heating. The decrease in diffusion coefficient of the alkyne, one of the two reactants of click reaction, was not reproduced during its copper coordination when the second reactant, azide, was absent. Our results do not support the catalysis-induced diffusion enhancement of the components of the click reaction and, instead, point to the role of a relatively large intermediate species within the reaction cycle with diffusivity lower than that of both the reactants and product molecule.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8796239 | PMC |
http://dx.doi.org/10.1021/jacs.1c11754 | DOI Listing |
Med Chem
January 2025
Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India.
The emergence of multidrug-resistant microbial strains poses a significant challenge to global public health. In response, researchers have been exploring innovative antimicrobial agents with enhanced efficacy and novel mechanisms of action. One promising approach involves the synthesis of hybrid molecules combining azetidinone and azole moieties, capitalizing on the respective antimicrobial properties of both structural elements.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Henan University, Colleg of Chemistry and Molecular Sciences, Jingmin, 475004, Kaifeng, CHINA.
Cycloparaphenylenes (CPPs) represent a significant challenge for the synthesis of mechanically interlocked architectures, because they lack heteroatoms, which precludes traditional active and passive template methods. To circumvent this problem and explore the fundamental and functional properties of CPP rotaxanes and catenanes, researches have resorted to unusual non-covalent and even to labor-intensive covalent template approaches. Herein, we report a ring-in-ring non-covalent template strategy that makes use of the surprisingly strong non-covalent inclusion of crown ethers into suitably sized CPPs.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan.
Here, "direct click bonding" of solid materials is proposed, which is the direct bonding of solid surfaces via the formation of covalent bonds without any adhesive. The present study shows that the Cu-free Huisgen 1,3-dipolar cycloaddition reaction proceeds between solid surfaces displaying cyclooctyne and azide groups, and it achieved the strong bonding of dissimilar solid materials as a macroscopic reaction. The bonding strength obtained is sufficiently high for practical use, and the strength can be controlled by the surface density of the cyclooctyne groups.
View Article and Find Full Text PDFTurk J Chem
October 2024
Department of Chemical Engineering, Faculty of Engineering and Natural Sciences, Uşak University, Uşak, Turkiye.
A new nonperipheral zinc(II) phthalocyanine bearing octa carboxylic acid ethyl ester derivative substituted triazole attached propylmercaptothiobenzylmercapto derivative was synthesized via the tetramerization reaction of phthalonitrile. The photochemical in vitro photodynamic activity of zinc(II) phthalocyanine (), such as human nonsmall cell lung carcinoma cell lines, was investigated in this study. The singlet oxygen generation property of novel zinc(II) phthalocyanine () was also examined due to the significantly high singlet oxygen quantum yield of (F = 0.
View Article and Find Full Text PDFChem Biodivers
January 2025
Matrusri Education Society, Department of Sciences and Humanities, Matrusri Engineering College, Hyderabad, 500059, Hyderabad, INDIA.
In this work, we have adopted an easy route to synthesizing bis-1,2,3-triazole-based benzophenone compounds via a 1,3-dipolar cycloaddition reaction (Click Chemistry). All the target compounds achieved better yields though the microwave-assisted method than the conventional method. Target compounds structure were confirmed based on the IR, 1H NMR, 13C NMR and HR Mass analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!