Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aging is often expected to decrease the pathogen removal capacity of media because of exhaustion of attachment sites by adsorption of co-contaminants and dissolved organics. In contrast, the adsorption of metals naturally present in stormwater during aging could have a positive impact on pathogen removal. To examine the effect of adsorbed metals on pathogen removal, biofilter media amended with expanded clay, shale, and slate (ESCS) aggregates, a lightweight aggregate, were exposed to metals by intermittently injecting natural stormwater spiked with Cu, Pb, and Zn, and the capacity of aged and unaged media to remove Escherichia coli (E. coli), a pathogen indicator, were compared. Metal adsorption on ESCS media decreased their net negative surface charge and altered the surface properties as confirmed by zeta potential measurement and Fourier-Transform Infrared Spectroscopy (FTIR) analysis. These changes increased the E. coli adsorption capacity of aged media compared with unaged media and decreased overall remobilization of attached E. coli during intermittent infiltration of stormwater. A live-dead analysis confirmed that the adsorbed metals inactivated attached E. coli, thereby replenishing the adsorption capacity. Overall, the results confirmed that natural aging of biofilter media with adsorbed metals could indeed have a net positive effect on E. coli removal in biofilters and therefore should be included in the conceptual model predicting long-term removal of pathogens from stormwater containing mixed pollutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.128309 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!