A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Natural aging of expanded shale, clay, and slate (ESCS) amendment with heavy metals in stormwater increases its antibacterial properties: Implications on biofilter design. | LitMetric

Aging is often expected to decrease the pathogen removal capacity of media because of exhaustion of attachment sites by adsorption of co-contaminants and dissolved organics. In contrast, the adsorption of metals naturally present in stormwater during aging could have a positive impact on pathogen removal. To examine the effect of adsorbed metals on pathogen removal, biofilter media amended with expanded clay, shale, and slate (ESCS) aggregates, a lightweight aggregate, were exposed to metals by intermittently injecting natural stormwater spiked with Cu, Pb, and Zn, and the capacity of aged and unaged media to remove Escherichia coli (E. coli), a pathogen indicator, were compared. Metal adsorption on ESCS media decreased their net negative surface charge and altered the surface properties as confirmed by zeta potential measurement and Fourier-Transform Infrared Spectroscopy (FTIR) analysis. These changes increased the E. coli adsorption capacity of aged media compared with unaged media and decreased overall remobilization of attached E. coli during intermittent infiltration of stormwater. A live-dead analysis confirmed that the adsorbed metals inactivated attached E. coli, thereby replenishing the adsorption capacity. Overall, the results confirmed that natural aging of biofilter media with adsorbed metals could indeed have a net positive effect on E. coli removal in biofilters and therefore should be included in the conceptual model predicting long-term removal of pathogens from stormwater containing mixed pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2022.128309DOI Listing

Publication Analysis

Top Keywords

pathogen removal
12
adsorbed metals
12
natural aging
8
slate escs
8
biofilter media
8
capacity aged
8
media decreased
8
adsorption capacity
8
attached coli
8
media
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!