Functional analysis of a novel MHC-Iα genotype in orange-spotted grouper: Effects on Singapore grouper iridovirus (SGIV) replication and apoptosis.

Fish Shellfish Immunol

University of JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China. Electronic address:

Published: February 2022

The classical major histocompatibility complex class I (MHC-Ⅰ) molecule plays a key role in vertebrate immune response for its important functions in antigen presentation and immune regulation. MHC pathway is closely related to many diseases involving autoimmunity, antigen intrusion and inflammation. However, rare literatures about the effect of MHC-I on fish cells apoptosis were reported. In this study, a novel type of MHC-Ⅰα genotype from orange-spotted grouper (named EcMHC-ⅠA*01) were cloned and characterized. It shared a 77% identity to its Epinephelus coioides MHC-Iα homology that has been uploaded to NCBI (ACZ97571.1). Molecular characterization analysis showed that EcMHC-ⅠA*01 encodes a 357-amino-acid protein, containing a signal peptide,α1,α2,α3, Cytoplasmic (Cyt) and Transmembrane (TM) domains. Tissue expression pattern showed that EcMHC-ⅠA*01 was extensively distributed in twelve selected tissues, with higher expression in the gill, intestine and skin. The expression of EcMHC-ⅠA*01 in grouper liver and spleen tissues were significantly induced by different stimuli (Zymosan A, LPS, Ploy I:C, RGNNV and SGIV). Comparing with the EcMHC-ⅠA*01 expression levels induced by Zymosan A, Ploy I:C and RGNNV, the effects induced by SGIV and LPS were more significant. Subcellular localization analysis showed that EcMHC-ⅠA*01 localizes throughout the cytoplasm appeared both diffuse and focal intracellular expression pattern. Overexpression of EcMHC-ⅠA*01 inhibited the CPE progression, the mRNA expression of the SGIV related genes (MCP, LITAF, ICP-18 and VP19) and the protein expression of MCP. Meanwhile, qRT-PCR result showed that EcMHC-ⅠA*01 overexpression upregulated the expression of interferon signaling molecules (IFN-γ, ISG56, MDA5 and MXI) and inflammatory cytokines (IL-1β, IL-6, TNF-α and TRAF6). In addition, our results showed that overexpression of EcMHC-ⅠA*01 promoted the apoptosis of normal fathead minnow (FHM) cells as well as the apoptosis of FHM cells induced by SGIV. However, there was no significant change in the activity of caspase 3 between control group and EcMHC-ⅠA*01 overexpression group, suggesting that EcMHC-ⅠA*01-induced apoptosis may not depend on the caspase 3 pathway. Taken together, these data in our study provide new insights into the role of MHC-I in antiviral immune response and apoptosis in fish.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2022.01.030DOI Listing

Publication Analysis

Top Keywords

ecmhc-Ⅰa*01
10
genotype orange-spotted
8
orange-spotted grouper
8
immune response
8
analysis ecmhc-Ⅰa*01
8
expression
8
expression pattern
8
ploy rgnnv
8
induced sgiv
8
overexpression ecmhc-Ⅰa*01
8

Similar Publications

Shared genetic factors and the interactions with fresh fruit intake contributes to four types squamous cell carcinomas.

PLoS One

December 2024

Department of Epidemiology & Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China.

Studies have reported risk factors for a single-squamous cell carcinoma(Single-SCCs). However, the shared common germline genetic factors and environmental factors have not been well elucidated with respect to augmented risk of pan-squamous cell carcinoma(Pan-SCCs). By integrating a large-scale genotype data of 1,928 Pan-SCCs cases and 7,712 age- and sex-matched controls in the UK Biobank cohort, as well as multiple transcriptome and protein databases, we conducted a multi-omics analysis.

View Article and Find Full Text PDF

Accurate calving time prediction plays a critical role in ensuring the well-being of both mother and calf during parturition. Challenges during the calving process, particularly in abnormal cases, often necessitate human intervention to prevent potentially fatal outcomes. This study proposes a novel system for automated prediction of normal and abnormal cattle calving cases based on posture analysis.

View Article and Find Full Text PDF

A novel particle size distribution correction method based on image processing and deep learning for coal quality analysis using NIRS-XRF.

Talanta

December 2024

State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, 030006, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.

The combined application of near-infrared spectroscopy (NIRS) and X-ray fluorescence spectroscopy (XRF) has achieved remarkable results in coal quality analysis by leveraging NIRS's sensitivity to organic compounds and XRF's reliability for inorganic composition. However, variations in particle size distribution negatively affect the diffuse reflectance of NIRS and the fluorescence signal intensities of XRF, leading to decreased accuracy and repeatability in predictions. To address this issue, this study innovatively proposes a particle size correction method that integrates image processing and deep learning.

View Article and Find Full Text PDF

Next-generation T-cell-directed vaccines for COVID-19 focus on establishing lasting T-cell immunity against current and emerging SARS-CoV-2 variants. Precise identification of conserved T-cell epitopes is critical for designing effective vaccines. Here we introduce a comprehensive computational framework incorporating a machine learning algorithm-MHCvalidator-to enhance mass spectrometry-based immunopeptidomics sensitivity.

View Article and Find Full Text PDF

Fowl adenovirus serotype 4 (FAdV-4) outbreaks have caused significant economic losses in the Chinese poultry industry since 2015. The relationships among viral structural proteins in infected hosts are relatively unknown. To explore the role of different parts of the fiber-1 protein in FAdV-4-infected hosts, we truncated fiber-1 into fiber-1-Δ1 (73-205 aa) and fiber-1-Δ2 (211-412 aa), constructed pEF1α-HA-fiber-1-Δ1 and pEF1α-HA-fiber-1-Δ2 and then transfected them into leghorn male hepatocyte (LMH) cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!