Aggrandized technological and industrial progression in past decades have occasioned immense depreciation in the quality of environment and ecosystem, majorly due to augmentation in the number of obnoxious pollutants incessantly being released in soil, water or air. Arsenic (As) is one such hazardous metalloid contaminating the environment which has the potential to detrimentally affect the life on earth. Even in minute quantity, As is known to cause various critical diseases in humans and toxicity in plants. Recent studies on nanoparticles (NPs) approve of their ability to qualify the criterion of becoming a potent tool for mitigating As-induced phytotoxicity. Nanoparticles are reported to promote plant growth under As-stress by stimulating various alterations at physiological, biochemical, and molecular levels. In this review, we provide an up-to-date compilation of research that has been carried out in comprehending the mechanisms utilized by nanoparticles including controlled As uptake and distribution in plants, maintenance of ROS homeostasis during stress and chelation and vacuolar sequestration of As so as to reduce the severity of toxicity induced by As, and potential areas of research in this field will also be indicated for future perspectives.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2022.118887DOI Listing

Publication Analysis

Top Keywords

nanoparticles
4
nanoparticles potential
4
potential protective
4
protective agent
4
agent arsenic
4
arsenic toxicity
4
toxicity alleviation
4
alleviation plants
4
plants aggrandized
4
aggrandized technological
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!