Introduction: This study investigated a colloidal microgel for angiogenic and odontogenic differentiation of cells in the presence of cell-derived extracellular matrix (ECM) proteins using a 3-dimensional culture model.
Methods: Viscoelastic properties of human dental pulp were determined to understand the native ECM environment. ECM proteins were extracted from dental pulp stem cell (DPSC) cultures, and MaxGel (Millipore Sigma, Burlington, MA) was used as a commercially available ECM protein. DPSCs were incubated in colloidal microgels in the presence of ECM proteins or gelatin methacryloyl (GelMA) as a bulk hydrogel (n = 9/group). The viability and odontogenic differentiation of DPSCs within hydrogels was determined using viability assays, mineralization staining, calcium and alkaline phosphatase assays, and quantitative polymerase chain reaction for odontogenic gene expression. Angiogenic properties of endothelial cells were determined using tubule formation assays and quantitative polymerase chain reaction to detect angiogenic gene expression.
Results: Dental pulp had a higher elastic modulus than the viscous modulus, showing a solidlike response similar to hydrogels. DPSC-derived ECM showed higher collagen and GAG than MaxGel (P < .05). The viability of DPSCs was similar in colloidal microgels, whereas higher cell viability, calcium deposition, and alkaline phosphatase activity were observed in GelMA (P < .05). Colloidal microgels allowed tubule-like structures by endothelial cells, whereas no tubular formation was observed in GelMA. DPSC-derived ECM in colloidal microgel up-regulated odontogenic gene expression, whereas MaxGel up-regulated angiogenic gene expression (P < .05).
Conclusions: Colloidal microgels allowed cellular organization that can improve penetration and nutritional supply in a full-length root canal system. The bioactivity of cell-derived ECM proteins can be modified depending on the external stimulus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.joen.2022.01.011 | DOI Listing |
Tissue Eng Regen Med
January 2025
Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon-si, 24341, Republic of Korea.
Background: Pain reduction, immunomodulation, and cartilage repair are key therapeutic goals in osteoarthritis (OA) treatment. In this study, we evaluated the therapeutic effects of porcine cartilage acellularized matrix (pCAM) derived from naive tissue and compared it with the synthetic material polynucleotides (PN) for OA treatment.
Methods: pCAM was produced from porcine cartilage through physicochemical processing.
Alzheimers Dement
December 2024
Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
Background: Physical activity (PA) is associated with lower dementia risk; however, underlying molecular pathways are poorly understood. We leveraged large-scale plasma proteomics to identify biological signatures of objectively-monitored PA in cognitively unimpaired (CU) older adults and cross-validated signatures in independent exercise intervention and Alzheimer's disease (AD) cohorts.
Method: Discovery cohort included 65 CU adults (mean = 76.
JCI Insight
January 2025
Department of Gastroenterology and.
Although biologics have been revolutionizing the treatment of inflammatory bowel diseases (IBD) over the past decade, a significant number of patients still fail to benefit from these drugs. Overcoming the nonresponse to biologics is one of the top challenges in IBD treatment. In this study, we revealed that hyaluronan (HA), an extracellular matrix (ECM) component in the gut, is associated with nonresponsiveness to infliximab and vedolizumab therapy in patients with IBD.
View Article and Find Full Text PDFJ Cosmet Dermatol
January 2025
Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang, Hangzhou, China.
Background: Skin pigmentation disorders may increase patients' psychological burdens. Consequently, they are increasingly attracting attention. Dermal fibroblasts have been shown to regulate pigmentation by secreting soluble factors.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Orthopedics, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, 223800, Jiangsu, China.
Background: Osteoarthritis (OA) is a common type of degenerative arthropathy. Previous studies have demonstrated that circular RNAs (circRNAs) are involved in the progression of OA. This study aimed to investigate the role and associated mechanism of circ_0075048 in OA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!