Background: Acinetobacter baumannii has emerged as one of the leading causes of multidrug resistant nosocomial infections worldwide. It is able to survive in hospital environment and build up diverse resistance mechanisms making it difficult to treat with current antibiotics. Objective: It was to determine the frequency and patterns of Acinetobacter baumannii in intensive care units (ICU) settings.
Methods: A cross sectional study was carried out in the Department of Microbiology, Armed Forces Institute of Pathology, Rawalpindi, from 1st July 2017 to 30th June 2019. A total of 603 non-duplicate clinical specimens were received from intensive care units. Specimens yielding growth of multidrug resistant Acinetobacter baumannii, were evaluated as per standard protocol. The antimicrobial sensitivity testing was performed as per Clinical and Laboratory Standard Institute guidelines (2017-2018).
Results: Among Acinetobacter baumannii (310 isolates), 5% were multidrug resistant, 93% extensively drug resistant and 1% pan drug resistant. Percentage of carbapenem resistant strains was 92%. In drugs like tigecycline and polymyxin, resistance was noted as 73% and 1% respectively. High yield of this superbug was mainly obtained from respiratory specimens (43.5%), whereas 24% were detected from wound infections and 29% from other samples. .
Conclusion: This study showed a rapidly increasing resistance in Acinetobacter baumannii. Therefore, polymyxin remains the only option in our intensive care units, but its usage as empirical therapy in our setting has led to the emergence of resistance to this drug. Implementing infection control practices, antimicrobial stewardship and restricted use of polymyxin can play a significant role in reducing health care burden.
Download full-text PDF |
Source |
---|
Infect Drug Resist
January 2025
Division of Infectious Diseases, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
Objective: This retrospective cohort study evaluated the treatment outcome of infection.
Methods: In this retrospective cohort study, 476 patients with () infection who were admitted to the internal medicine ward at Lampang Hospital, Lampang, Thailand, from 1 January 2020 to 31 December 2020 were enrolled. Medical records were reviewed.
Indian J Crit Care Med
November 2024
Department of Critical Care Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India.
Aims And Background: Carbapenem-resistant (CRAb), a major public health threat, causes severe infections in Intensive Care Unit (ICU) patients. It resists β-lactam antibiotics through mechanisms like New Delhi metallo-beta-lactamase (NDM).
Materials And Methods: In ICU patients, 69 species were isolated from 86 non-fermenting Gram-negative bacilli.
Int J Infect Dis
January 2025
Division of Infectious Disease, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand.
Indian J Med Microbiol
January 2025
Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India.
Introduction: Cefiderocol is a parenteral catechol-type siderophore cephalosporin, which has been approved for the treatment of gram-negative bacterial infections. Its activity among the carbapenem-resistant gram negative bacilli (CR-GNBs) in India is largely unknown.
Methodology: We tested in-vitro susceptibility of cefiderocol in 84 CR-GNB [ carbapenem-resistant Acinetobacter baumannii (CRAB), carbapenem-resistant Pseudomonas aeruginosa (CRPA) , carbapenem-resistant Escherichia coli (CREC) and carbapenem-resistant Klebsiella pneumoniae (CRKP)] by broth microdilution(BMD) and disc diffusion (DD) using Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints and concordance of DD was compared with BMD.
Antimicrob Agents Chemother
January 2025
Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China.
Eravacycline is a broad-spectrum fluorocycline currently approved for complicated intra-abdominal infections (cIAIs). In lung-infection models, it is effective against methicillin-resistant (MRSA) and tetracycline-resistant MRSA. As such, we aimed to develop a population pharmacokinetic/pharmacodynamic (PK/PD) model to evaluate eravacycline's pulmonary distribution and kinetics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!