The majority of musculoskeletal modelling studies investigating healthy populations use generic models linearly scaled to roughly match an individual's anthropometry. Generic models disregard the considerable variation in musculoskeletal geometry and tissue properties between individuals. This study investigated the physiological implications of personalizing musculoskeletal model geometry (body segment mass, inertia, joint center, and maximum isometric muscle force). Nine healthy athletes performed ten repetitions of 15 meter sprints at 75-95% of their maximum sprinting speed and ten repetitions of unanticipated sidestep cut trials with a 4.5-5.5 m/s approach running speed. Structural magnetic resonance imaging was collected on the lower extremities, from which subject-specific musculoskeletal models were developed. A one-dimensional statistical parametric mapping paired t-test was used to compare generic and subject-specific musculoskeletal models for: lower-limb kinematics, kinetics, torque matching, as well as hamstrings, adductors, and quadriceps muscle activations and fiber dynamics. Percentage change of geometric parameters between generic and subject-specific models were determined. Compared to generic models, subject-specific models showed significantly lower ankle dorsi/plantar flexion angle during sprinting and several significantly different net joint moments during sprint and cut tasks. Additionally, subject-specific models demonstrated better torque matching, more physiologically plausible fiber lengths, higher fiber velocities, lower muscle forces, and lower simulated activations in a subset of investigated muscles and motor tasks. Furthermore, subject-specific models identified between-limb differences that were not identified with generic models. Use of subject-specific modeling, even in healthy populations, may result in more physiologically plausible muscle fiber mechanics. Implementing subject-specific models may be especially beneficial when investigating populations with substantial geometric between-limb differences, or unilateral musculoskeletal pathologies, as these are not captured by a generic model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8789151PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0262936PLOS

Publication Analysis

Top Keywords

subject-specific models
20
generic models
16
subject-specific musculoskeletal
12
models
11
subject-specific
9
musculoskeletal modelling
8
modelling worth
8
generic
8
healthy populations
8
ten repetitions
8

Similar Publications

Subject-specific finite element (FE) modeling of the mandible bone has recently gained attention for its higher accuracy. A critical modeling factor is including personalized material properties from medical images especially when bone quality has to be respected. However, there is no consensus on the material model for the mandible that realistically estimates the Young's modulus of the bone.

View Article and Find Full Text PDF

Temporal lobe epilepsy (TLE) is characterized by alterations of brain dynamic on a large-scale associated with altered cognitive functioning. Here, we aimed at analyzing dynamic reconfiguration of brain activity, using the neural fingerprint approach, to delineate subject-specific characteristics and their cognitive correlates in TLE. We collected 10 min of resting-state scalp-electroencephalography (EEG, 128 channels), free from epileptiform activity, from 68 TLE patients and 34 controls.

View Article and Find Full Text PDF

Unveiling Schizophrenia: a study with generalized functional linear mixed model via the investigation of functional random effects.

Biostatistics

December 2024

Center for Applied Statistics, School of Statistics, Renmin University of China, No. 59 Zhongguancun Street, Beijing, 100872, P.R. China.

Previous studies have identified attenuated pre-speech activity and speech sound suppression in individuals with Schizophrenia, with similar patterns observed in basic tasks entailing button-pressing to perceive a tone. However, it remains unclear whether these patterns are uniform across individuals or vary from person to person. Motivated by electroencephalographic (EEG) data from a Schizophrenia study, we develop a generalized functional linear mixed model (GFLMM) for repeated measurements by incorporating subject-specific functional random effects associated with multiple functional predictors.

View Article and Find Full Text PDF

Optimization of the density-elasticity relationship for rabbit hindlimb bones.

J Mech Behav Biomed Mater

January 2025

Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada; Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.

The rabbit is a popular experimental model in orthopaedic biomechanics due to the presence of natural Haversian remodeling, allowing for better translational relevance to the mechanobiology of human bone over traditional rodent models. Although rabbits are often used with computational modeling approaches such as the finite element (FE) method, a validated and widely agreed upon density-elasticity relationship, which is required to make subject-specific predictions, does not exist. Therefore, the purpose of this study was to determine and validate an accurate density-elasticity relationship for rabbit hindlimb bones using mathematical optimization.

View Article and Find Full Text PDF

Objective: To investigate the biodynamics of human-exoskeleton interactions during patient handling tasks using a subject-specific modeling approach.

Background: Exoskeleton technology holds promise for mitigating musculoskeletal disorders caused by manual handling and most alarmingly by patient handling jobs. A deeper, more unified understanding of the biomechanical effects of exoskeleton use calls for advanced subject-specific models of complex, dynamic human-exoskeleton interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!