Heart Rate (HR) estimation is of utmost importance due to its applicability in diverse fields. Conventional methods for HR estimation require skin contact and are not suitable in certain scenarios such as sensitive skin or prolonged unobtrusive HR monitoring. Therefore remote photoplethysmography (rPPG) methods have become an active area of research. These methods utilize the facial videos acquired using a camera followed by extracting the Blood Volume Pulse (BVP) signal for heart rate calculation. The existing rPPG methods either utilized a single color channel or weighted color differences, which has certain limitations dealing with motion and illumination artifacts. This study considered BVP extraction as an undercomplete problem and proposed a method resistant to motion and illumination variation artifacts. This method is based on an undercomplete independent component analysis, aiming to estimate the unmixing matrix using a non-linear Cumulative Density Function (CDF) that has been optimized using the customized Levenberg-Marquardt algorithm. Therefore, the method is named U-LMA. The proposed method was tested under three scenarios: constrained, motion, and illumination variations scenarios. High Pearson correlation coefficient values and smaller lower-upper statistical limits of Bland-Altman plots justified the outstanding performance of the proposed U-LMA. Furthermore, its comparative analysis with the state-of-the-art methods demonstrated its efficacy and reliability, which was proven by the lowest error and highest correlation values (0.01 significance level). Additionally, higher accuracy satisfying the clinically accepted error differences also justified its clinical relevance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2022.3144677 | DOI Listing |
Int J Biol Macromol
January 2025
School of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China. Electronic address:
Flexible smart sensing materials are gaining tremendous momentum in wearable and bionic smart electronics. To satisfy the growing demand for sustainability and eco-friendliness, biomass-based hydrogel sensors for green and biologically safe wearable sensors have attracted significant attention. In this work, we have prepared MCC/PAA/AgNWs/CNTs hydrogel sensors with excellent conductive sensing properties by a simple physical blending method.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
The advancement of underwater monitoring technologies has been significantly hampered by the limitations of traditional electrical sensors, particularly in the presence of electromagnetic interference and safety concerns in aquatic environments. Fiber optic sensors are therefore nowadays widely applied to underwater monitoring devices. However, silicon- and polymer-based optical fibers often face challenges, such as rigidity, susceptibility to environmental stress, and limited operational flexibility.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
January 2025
Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, Bordeaux, France.
Single molecule tracking and super-resolution microscopy of integrin adhesion proteins and actin in developing Drosophila muscle attachment sites reveals that nanotopography triggered by Arp2/3-dependent actin protrusions promotes stable adhesion formation. The nanodomains formed during this process confine the diffusion of integrins and promote their immobilization. Spatial confinement is also applied to the motion of actin filaments, resulting in enhanced mechanical connection with the integrin adhesion complex.
View Article and Find Full Text PDFLasers Med Sci
January 2025
Basic Science Department, Faculty of Physical Therapy, Cairo University, Cairo, Egypt.
To compare the effects of High-Intensity Laser Therapy (HILT) versus Low-Level Laser Therapy (LLLT) on shoulder pain and disability, shoulder Range of Motion (ROM), Pain Pressure Threshold (PPT), and sleep quality of patients having Subacromial Impingement Syndrome (SAIS). Forty-two patients with SAIS were randomly assigned into three groups, the HILT group (n = 14), the LLLT group (n = 14), and control group (n = 14). All groups received an exercise program consisted of shoulder muscles stretching and strengthening exercises.
View Article and Find Full Text PDFMater Horiz
January 2025
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
Recent efforts have focused on developing stimuli-responsive soft actuators that mimic the adaptive, complex, and reversible movements found in natural species. However, most hydrogel actuators are limited by their inability to combine wavelength-selectivity with reprogrammable shape changes, thereby reducing their degree of freedom in motion. To address this challenge, we present a novel strategy that integrates these capabilities by grafting fluorophores onto temperature-responsive hydrogels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!