A Tar aspartate receptor and Rubisco-like protein substitute biotin in the growth of rhizobial strains.

Microbiology (Reading)

Programa de Genómica Funcional de Procariotes, Laboratorio de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.

Published: January 2022

Biotin is a key cofactor of metabolic carboxylases, although many rhizobial strains are biotin auxotrophs. When some of these strains were serially subcultured in minimal medium, they showed diminished growth and increased excretion of metabolites. The addition of biotin, or genetic complementation with biotin synthesis genes resulted in full growth of CFN42 and CIAT652 strains. Half of rhizobial genomes did not show genes for biotin biosynthesis, but three-quarters had genes for biotin transport. Some strains had genes for an avidin homologue (rhizavidin), a protein with high affinity for biotin but an unknown role in bacteria. A CFN42-derived rhizavidin mutant showed a sharper growth decrease in subcultures, revealing a role in biotin storage. In the search of biotin-independent growth of subcultures, CFN42 and CIAT652 strains with excess aeration showed optimal growth, as they also did, unexpectedly, with the addition of aspartic acid analogues α- and -methyl aspartate. Aspartate analogues can be sensed by the chemotaxis aspartate receptor Tar. A homologue was identified and its mutants showed no growth recovery with aspartate analogues, indicating requirement of the Tar receptor in such a phenotype. Additionally, mutants did not recover full growth with excess aeration. A Rubisco-like protein was found to be necessary for growth as the corresponding mutants showed no recovery either with high aeration or aspartate analogues; also, diminished carboxylation was observed. Taken together, our results indicate a route of biotin-independent growth in rhizobial strains that included oxygen, a Tar receptor and a previously uncharacterized Rubisco-like protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914248PMC
http://dx.doi.org/10.1099/mic.0.001130DOI Listing

Publication Analysis

Top Keywords

rubisco-like protein
12
rhizobial strains
12
aspartate analogues
12
growth
10
biotin
9
aspartate receptor
8
growth rhizobial
8
strains biotin
8
full growth
8
cfn42 ciat652
8

Similar Publications

Gemmatimonadota is a diverse bacterial phylum commonly found in environments such as soils, rhizospheres, fresh waters, and sediments. So far, the phylum contains just six cultured species (five of them sequenced), which limits our understanding of their diversity and metabolism. Therefore, we analyzed over 400 metagenome-assembled genomes (MAGs) and 5 culture-derived genomes representing Gemmatimonadota from various aquatic environments, hydrothermal vents, sediments, soils, and host-associated (with marine sponges and coral) species.

View Article and Find Full Text PDF

A Tar aspartate receptor and Rubisco-like protein substitute biotin in the growth of rhizobial strains.

Microbiology (Reading)

January 2022

Programa de Genómica Funcional de Procariotes, Laboratorio de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.

Biotin is a key cofactor of metabolic carboxylases, although many rhizobial strains are biotin auxotrophs. When some of these strains were serially subcultured in minimal medium, they showed diminished growth and increased excretion of metabolites. The addition of biotin, or genetic complementation with biotin synthesis genes resulted in full growth of CFN42 and CIAT652 strains.

View Article and Find Full Text PDF

Serpentinite-hosted systems represent modern-day analogs of early Earth environments. In these systems, water-rock interactions generate highly alkaline and reducing fluids that can contain hydrogen, methane, and low-molecular-weight hydrocarbons-potent reductants capable of fueling microbial metabolism. In this study, we investigated the microbiota of Hakuba Happo hot springs (∼50°C; pH∼10.

View Article and Find Full Text PDF

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is considered to be the most abundant enzyme on Earth. Despite this, its full diversity and distribution across the domains of life remain to be determined. Here, we leverage a large set of bacterial, archaeal, and viral genomes recovered from the environment to expand our understanding of existing RuBisCO diversity and the evolutionary processes responsible for its distribution.

View Article and Find Full Text PDF

Colocation of the genes encoding ABC, TRAP, and TCT transport systems and catabolic pathways for the transported ligand provides a strategy for discovering novel microbial enzymes and pathways. We screened solute-binding proteins (SBPs) for ABC transport systems and identified three that bind D-apiose, a branched pentose in the cell walls of higher plants. Guided by sequence similarity networks (SSNs) and genome neighborhood networks (GNNs), the identities of the SBPs enabled the discovery of four catabolic pathways for D-apiose with eleven previously unknown reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!