A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Decellularized human amniotic membrane reinforced by MoS-Polycaprolactone nanofibers, a novel conductive scaffold for cardiac tissue engineering. | LitMetric

In order to regenerate myocardial tissues with functional characteristics, we need to copy some properties of the myocardium, such as its extracellular matrix and electrical conductivity. In this study, we synthesized nanosheets of Molybdenum disulfide (MoS), and integrated them into polycaprolactone (PCL) and electrospun on the surface of decellularized human amniotic membrane (DHAM) with the purpose of improving the scaffolds mechanical properties and electrical conductivity. For studies, we seeded the mouse embryonic cardiac cells, mouse Embryonic Cardiac Cells (mECCs), on the scaffolds and then studied the MoS nanocomposites by scanning electron microscopy and Raman spectroscopy. In addition, we characterized the DHAM/PCL and DHAM/PCL-MoS by SEM, transmission electron microscopy, water contact angle measurement, electrical conductivity, and tensile test. Besides, we confirmed the scaffolds are biocompatible by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, MTT assay. Furthermore, by means of SEM images, it was shown that mECCs attached to the DHAM/PCL-MoS scaffold have more cell aggregations and elongated morphology. Furthermore, through the Real-Time PCR and immunostaining studies, we found out cardiac genes were maturated and upregulated, and they also included GATA-4, c-TnT, NKX 2.5, and alpha-myosin heavy chain in cells cultured on DHAM/PCL-MoS scaffold in comparison to DHAM/PCL and DHAM. Therefore, in terms of cardiac tissue engineering, DHAM nanofibrous scaffolds reinforced by PCL-MoS can be suggested as a proper candidate.

Download full-text PDF

Source
http://dx.doi.org/10.1177/08853282211063289DOI Listing

Publication Analysis

Top Keywords

electrical conductivity
12
decellularized human
8
human amniotic
8
amniotic membrane
8
cardiac tissue
8
tissue engineering
8
mouse embryonic
8
embryonic cardiac
8
cardiac cells
8
electron microscopy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!