Compared to metal-organic complexes and transition-metal halides, group I metal halides are attractive catalysts for the crucial cycloaddition reaction of CO to epoxides as they are ubiquitously available and inexpensive, have a low molecular weight, and are not based on (potentially) endangered metals, especially for the case of sodium and potassium. Nevertheless, given their low intrinsic catalytic efficiency, they require the assistance of additional catalytic moieties. In this work, we show that by exploiting the high nucleophilicity of opportunely designed aminopyridines, catalytic systems based on alkaline metals can be formed, which allow the cycloaddition of CO to epoxides to proceed under atmospheric pressure at moderate temperatures. Importantly, the aminopyridine nucleophiles can be applied in their heterogenized form, leading to a recyclable catalytic system. An investigation of the reaction mechanism by density functional theory calculations shows that metal halide complexes and nucleophilic pyridines can work as a dual cooperative catalytic system where the use of aminopyridines leads to lower energy barriers for the opening of the epoxide ring, and halide-adducts are involved in the subsequent steps of CO insertion and ring closure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.1c02770 | DOI Listing |
Carbon fibre reinforced polyetheretherketone (CFR-PEEK) implants have gained interest because of reported biomechanical advantages and radio-lucent properties. The aim of this study was to evaluate the role of CFR-PEEK nails in patients with metastatic bone disease (MBD). We performed a retrospective cohort study evaluating patients with MBD undergoing intramedullary (IM) nailing for prophylaxis or fixation of pathological fractures using CFR- PEEK or titanium implants.
View Article and Find Full Text PDFInorg Chem
January 2025
Institute of Solid State Physics, TU Wien, A-1040 Vienna, Austria.
A novel ternary boride, NiPtB ( = 0.5), was obtained by argon-arc melting of the elements followed by annealing at 750 °C. It exhibits a new structure type with the space group ( = 2.
View Article and Find Full Text PDFDalton Trans
January 2025
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China.
Five alkali metal manganese(III) fluorophosphates, KMn(POF)F (I), RbMn(POF)F (II), RbMn(POF)(PO)F (III), RbMn(POF)(PO)F (IV), and CsMn(POF)F (V), were successfully synthesized using a hydrothermal method. The monofluorophosphate anion (POF) groups work as "chemical scissors" to promote low-dimensional spin structures with the aid of alkali metal cations. I and II had an = 2 uniform chain structure formed by corner-sharing -MnOF octahedra.
View Article and Find Full Text PDFJ Mol Model
January 2025
Nanjing Hydraulic Research Institute, Shanghai, China.
Context: This study systematically investigated the effects of single S-atom vacancy defects and composite defects (vacancy combined with doping) on the properties of MoS using density functional theory. The results revealed that N-doped S-vacancy MoS has the smallest composite defect formation energy, indicating its highest stability. Doping maintained the direct band gap characteristic, with shifts in the valence band top.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata, 700 009, India.
Melatonin increases Pb tolerance in P. ovata seedlings via the regulation of growth and stress-related phytohormones, ROS scavenging and genes responsible for melatonin synthesis, metal chelation, and stress defense. Lead (Pb) is a highly toxic heavy metal that accumulates in plants through soil and air contamination and impairs its plant growth and development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!