Type 2 diabetes mellitus (T2DM) is a heritable metabolic perturbation, rapidly growing across the world. Primary recognition of susceptible individuals with a family history of type 2 diabetes (FHD) in the prediabetes stage could delay the onset of T2DM or reduce complications induced by diabetes. This study aims to evaluate the expression levels of miR-21, miR-126 as noninvasive predictive biomarkers in individuals with genetic predisposition and investigate the correlation of miRNAs and cardiometabolic risk factors. Our study demonstrated that miR-21 expression has a notable elevate in both groups of T2DM and pre-T2DM. miR-21 expression was distinguished in the pre-T2DM and T2DM from the nondiabetic individuals by ROC curve analysis with AUC of 0.77 (95% CI 0.65-0.90; p = 0.0004) and AUC of 0.78 (95% CI 0.64-0.92; p = 0.0042), respectively. The relative gene expression of miR-126 was nearly equal among groups. miR-21 expression was positively associated with glycosylated hemoglobin (HbA1c), fasting blood sugar (FBS), and triglyceride (TG) and might have diagnostic value for T2DM and pre-T2DM. This study has revealed that the expression level of miR-21 can be considered as a non-invasive and rapid tool for distinguishing pre-T2DM and T2DM counterparts from healthy individuals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8787720 | PMC |
http://dx.doi.org/10.14814/phy2.15163 | DOI Listing |
Sci Rep
January 2025
School of Sports and Health, Nanjing Sport Institute, Nanjing, China.
Mitochondrial function is crucial for hepatic lipid metabolism. Current research identifies two types of mitochondria based on their contact with lipid droplets: peridroplet mitochondria (PDM) and cytoplasmic mitochondria (CM). This work aimed to investigate the alterations of CM and PDM in metabolic dysfunction-associated steatotic liver disease (MASLD) induced by spontaneous type-2 diabetes mellitus (T2DM) in db/db mice.
View Article and Find Full Text PDFNat Methods
January 2025
Broad Institute of MIT and Harvard, Cambridge, MA, USA.
A key challenge of the modern genomics era is developing empirical data-driven representations of gene function. Here we present the first unbiased morphology-based genome-wide perturbation atlas in human cells, containing three genome-wide genotype-phenotype maps comprising CRISPR-Cas9-based knockouts of >20,000 genes in >30 million cells. Our optical pooled cell profiling platform (PERISCOPE) combines a destainable high-dimensional phenotyping panel (based on Cell Painting) with optical sequencing of molecular barcodes and a scalable open-source analysis pipeline to facilitate massively parallel screening of pooled perturbation libraries.
View Article and Find Full Text PDFNat Med
January 2025
Food Is Medicine Institute, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA.
Sci Rep
January 2025
Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
With the rapid advancement of proteomics, numerous scholars have investigated the intricate relationships between plasma proteins and various diseases. Therefore, this study aims to elucidate the relationship between BDH1 and type 2 diabetes using Mendelian randomization (MR) and to identify novel targets for the prevention and treatment of type 2 diabetes through proteomics. This study primarily employed the Mendelian Randomization (MR) method, leveraging genetic data from numerous large-scale, publicly accessible genome-wide association studies (GWAS).
View Article and Find Full Text PDFIntroduction: The most frequent form of diabetes in pediatric patients is polygenic autoimmune diabetes (T1D), but single-gene variants responsible for autoimmune diabetes have also been described. Both disorders share clinical features, which can lead to monogenic forms being misdiagnosed as T1D. However, correct diagnosis is crucial for therapeutic choice, prognosis and genetic counseling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!